scholarly journals Diamond power devices: state of the art, modelling, figures of merit and future perspective

2019 ◽  
Vol 53 (9) ◽  
pp. 093001 ◽  
Author(s):  
N Donato ◽  
N Rouger ◽  
J Pernot ◽  
G Longobardi ◽  
F Udrea
2008 ◽  
Vol 600-603 ◽  
pp. 895-900 ◽  
Author(s):  
Anant K. Agarwal ◽  
Albert A. Burk ◽  
Robert Callanan ◽  
Craig Capell ◽  
Mrinal K. Das ◽  
...  

In this paper, we review the state of the art of SiC switches and the technical issues which remain. Specifically, we will review the progress and remaining challenges associated with SiC power MOSFETs and BJTs. The most difficult issue when fabricating MOSFETs has been an excessive variation in threshold voltage from batch to batch. This difficulty arises due to the fact that the threshold voltage is determined by the difference between two large numbers, namely, a large fixed oxide charge and a large negative charge in the interface traps. There may also be some significant charge captured in the bulk traps in SiC and SiO2. The effect of recombination-induced stacking faults (SFs) on majority carrier mobility has been confirmed with 10 kV Merged PN Schottky (MPS) diodes and MOSFETs. The same SFs have been found to be responsible for degradation of BJTs.


2000 ◽  
Vol 626 ◽  
Author(s):  
T. Caillat ◽  
J.-P. Fleurial ◽  
G. J. Snyder ◽  
A. Borshchevsky

ABSTRACTA new version of a segmented thermoelectric unicouple incorporating advanced thermoelectric materials with superior thermoelectric figures of merit has been recently proposed and is currently under development at the Jet Propulsion Laboratory (JPL). This advanced segmented thermoelectric unicouple includes a combination of state-of-the-art thermoelectric materials based on Bi2Te3 and novel materials developed at JPL. The segmented unicouple currently being developed is expected to operate between 300 and about 975K with a projected thermal to electrical efficiency of up to 15%. The segmentation can be adjusted to accommodate various hot-side temperatures depending on the specific application envisioned. Techniques and materials have been developed to bond the different thermoelectric segments together for the nand p-legs and low contact resistance bonds have been achieved. In order to experimentally determine the thermal to electrical efficiency of the unicouple, metallic interconnects must be developed for the hot side of the thermocouple to connect the n- and p-legs electrically. The latest results in the development of these interconnects are described in this paper. Efforts are also focusing on the fabrication of a unicouple specifically designed for thermal and electrical testing.


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 325-330
Author(s):  
S. Roy ◽  
A. Asenov ◽  
S. Babiker ◽  
J. R. Barker ◽  
S. P. Beaumont

The microwave performance potential of Si/SiGe pseudomorphic MODFETs are studied, in comparison to state of the art InGaAs pseudomorphic HEMTs. Both devices have equivalent structures corresponding to a physical HEMT used for calibration. We use an RF analysis technique based on transient Monte Carlo simulations to estimate the intrinsic noise figures, the RF figures of merit fT and fmax, and the effect of contact and gate resistances. Both devices exhibit velocity overshoot below the gate region. It is shown that the difference in noise figures and fT values can be mainly attributed to differences in device channel velocity, fmax exhibits a strong dependence on device contact resistance, eroding some of the performance advantage of the pseudomorphic HEMT.


Sign in / Sign up

Export Citation Format

Share Document