Critical Technical Issues in High Voltage SiC Power Devices

2008 ◽  
Vol 600-603 ◽  
pp. 895-900 ◽  
Author(s):  
Anant K. Agarwal ◽  
Albert A. Burk ◽  
Robert Callanan ◽  
Craig Capell ◽  
Mrinal K. Das ◽  
...  

In this paper, we review the state of the art of SiC switches and the technical issues which remain. Specifically, we will review the progress and remaining challenges associated with SiC power MOSFETs and BJTs. The most difficult issue when fabricating MOSFETs has been an excessive variation in threshold voltage from batch to batch. This difficulty arises due to the fact that the threshold voltage is determined by the difference between two large numbers, namely, a large fixed oxide charge and a large negative charge in the interface traps. There may also be some significant charge captured in the bulk traps in SiC and SiO2. The effect of recombination-induced stacking faults (SFs) on majority carrier mobility has been confirmed with 10 kV Merged PN Schottky (MPS) diodes and MOSFETs. The same SFs have been found to be responsible for degradation of BJTs.

2018 ◽  
Vol 924 ◽  
pp. 523-526 ◽  
Author(s):  
B. Jayant Baliga ◽  
Woong Je Sung ◽  
Ki Jeong Han ◽  
J. Harmon ◽  
A. Tucker ◽  
...  

PowerAmerica sponsored the development by NCSU of a process for manufacturing power MOSFETs and JBS Rectifiers in 2015. This process, named PRESiCETM, was successful in making 1.2 kV rated state-of-the-art 4H-SiC power devices (MOSFETs, BiDFETs, and JBS Rectifiers) in the X-Fab foundry. In addition, we were successful in monolithically integrating a JBS fly-back rectifier into the power MOSFET structure to create the power JBSFET which allows saving significant (~ 40 %) chip area and reducing package count in half. In the second year (2016), NCSU has qualified the process for manufacturing these power devices at X-Fab.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092566
Author(s):  
Dahan Wang ◽  
Sheng Luo ◽  
Li Zhao ◽  
Xiaoming Pan ◽  
Muchou Wang ◽  
...  

Fire is a fierce disaster, and smoke is the early signal of fire. Since such features as chrominance, texture, and shape of smoke are very special, a lot of methods based on these features have been developed. But these static characteristics vary widely, so there are some exceptions leading to low detection accuracy. On the other side, the motion of smoke is much more discriminating than the aforementioned features, so a time-domain neural network is proposed to extract its dynamic characteristics. This smoke recognition network has these advantages:(1) extract the spatiotemporal with the 3D filters which work on dynamic and static characteristics synchronously; (2) high accuracy, 87.31% samples being classified rightly, which is the state of the art even in a chaotic environments, and the fuzzy objects for other methods, such as haze, fog, and climbing cars, are distinguished distinctly; (3) high sensitiveness, smoke being detected averagely at the 23rd frame, which is also the state of the art, which is meaningful to alarm early fire as soon as possible; and (4) it is not been based on any hypothesis, which guarantee the method compatible. Finally, a new metric, the difference between the first frame in which smoke is detected and the first frame in which smoke happens, is proposed to compare the algorithms sensitivity in videos. The experiments confirm that the dynamic characteristics are more discriminating than the aforementioned static characteristics, and smoke recognition network is a good tool to extract compound feature.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jianbo Zhu ◽  
Xuemei Zhang ◽  
Muchun Guo ◽  
Jingyu Li ◽  
Jinsuo Hu ◽  
...  

AbstractThe single parabolic band (SPB) model has been widely used to preliminarily elucidate inherent transport behaviors of thermoelectric (TE) materials, such as their band structure and electronic thermal conductivity, etc. However, in the SPB calculation, it is necessary to determine some intermediate variables, such as Fermi level or the complex Fermi-Dirac integrals. In this work, we establish a direct carrier-concentration-dependent restructured SPB model, which eliminates Fermi-Dirac integrals and Fermi level calculation and emerges stronger visibility and usability in experiments. We have verified the reliability of such restructured model with 490 groups of experimental data from state-of-the-art TE materials and the relative error is less than 2%. Moreover, carrier effective mass, intrinsic carrier mobility and optimal carrier concentration of these materials are systematically investigated. We believe that our work can provide more convenience and accuracy for thermoelectric data analysis as well as instructive understanding on future optimization design.


Author(s):  
Wei Peng ◽  
Baogui Xin

AbstractA recommendation can inspire potential demands of users and make e-commerce platforms more intelligent and is essential for e-commerce enterprises’ sustainable development. The traditional social recommendation algorithm ignores the following fact: the preferences of users with trust relationships are not necessarily similar, and the consideration of user preference similarity should be limited to specific areas. To solve these problems mentioned above, we propose a social trust and preference segmentation-based matrix factorization (SPMF) recommendation algorithm. Experimental results based on the Ciao and Epinions datasets show that the accuracy of the SPMF algorithm is significantly superior to that of some state-of-the-art recommendation algorithms. The SPMF algorithm is a better recommendation algorithm based on distinguishing the difference of trust relations and preference domain, which can support commercial activities such as product marketing.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 324
Author(s):  
Carmelo Barbagallo ◽  
Santi Agatino Rizzo ◽  
Giacomo Scelba ◽  
Giuseppe Scarcella ◽  
Mario Cacciato

This work presents a step-by-step procedure to estimate the lifetime of discrete SiC power MOSFETs equipping three-phase inverters of electric drives. The stress of each power device when it is subjected to thermal jumps from a few degrees up to about 80 °C was analyzed, starting from the computation of the average power losses and the commitment of the electric drive. A customizable mission profile was considered where, by accounting the working conditions of the drive, the corresponding average power losses and junction temperatures of the SiC MOSFETs composing the inverter can be computed. The tool exploits the Coffin–Manson theory, rainflow counting, and Miner’s rule for the lifetime estimation of the semiconductor power devices. Different operating scenarios were investigated, underlying their impact on the lifetime of SiC MOSFETs devices. The lifetime estimation procedure was realized with the main goal of keeping limited computational efforts, while providing an effective evaluation of the thermal effects. The method enables us to set up any generic mission profile from the electric drive model. This gives us the possibility to compare several operating scenario of the drive and predict the worse operating conditions for power devices. Finally, although the lifetime estimation tool was applied to SiC power MOSFET devices for a general-purpose application, it can be extended to any type of power switch technology.


2016 ◽  
Vol 113 (49) ◽  
pp. 14079-14084 ◽  
Author(s):  
Haipeng Li ◽  
Jinggong Xiang-Yu ◽  
Guangyi Dai ◽  
Zhili Gu ◽  
Chen Ming ◽  
...  

Accelerated losses of biodiversity are a hallmark of the current era. Large declines of population size have been widely observed and currently 22,176 species are threatened by extinction. The time at which a threatened species began rapid population decline (RPD) and the rate of RPD provide important clues about the driving forces of population decline and anticipated extinction time. However, these parameters remain unknown for the vast majority of threatened species. Here we analyzed the genetic diversity data of nuclear and mitochondrial loci of 2,764 vertebrate species and found that the mean genetic diversity is lower in threatened species than in related nonthreatened species. Our coalescence-based modeling suggests that in many threatened species the RPD began ∼123 y ago (a 95% confidence interval of 20–260 y). This estimated date coincides with widespread industrialization and a profound change in global living ecosystems over the past two centuries. On average the population size declined by ∼25% every 10 y in a threatened species, and the population size was reduced to ∼5% of its ancestral size. Moreover, the ancestral size of threatened species was, on average, ∼22% smaller than that of nonthreatened species. Because the time period of RPD is short, the cumulative effect of RPD on genetic diversity is still not strong, so that the smaller ancestral size of threatened species may be the major cause of their reduced genetic diversity; RPD explains 24.1–37.5% of the difference in genetic diversity between threatened and nonthreatened species.


2008 ◽  
Vol 1069 ◽  
Author(s):  
Ryoji Kosugi ◽  
Toyokazu Sakata ◽  
Yuuki Sakuma ◽  
Tsutomu Yatsuo ◽  
Hirofumi Matsuhata ◽  
...  

ABSTRACTIn practical use of the SiC power MOSFETs, further reduction of the channel resistance, high stability under harsh environments, and also, high product yield of large area devices are indispensable. Pn diodes with large chip area have been already reported with high fabrication yield, however, there is few reports in terms of the power MOSFETs. To clarify the difference between the simple pn diodes and power MOSFETs, we have fabricated four pn-type junction TEGs having the different structural features. Those pn junctions are close to the similar structure of DIMOS (Double-implanted MOS) step-by-step from the simple pn diodes. We have surveyed the V-I characteristics dependence on each structural features over the 2inch wafer. Before their fabrication, we formed grid patterns with numbering over the 2inch wafer, then performed the synchrotron x-ray topography observation. This enables the direct comparison the electrical and spectrographic characteristics of each pn junctions with the fingerprints of defects.Four structural features from TypeA to TypeD are as follows. TypeA is the most simple structure as same as the standard pn diodes formed by Al+ ion implantation (I/I), except that the Al+ I/I condition conforms to that of the p-well I/I in the DIMOS. The JTE structure was used for the edge termination on all junctions. While the TypeA consists of one p-type region, TypeB and TypeC consists of a lot of p-wells. The difference of Type B and C is a difference of the oxide between the adjacent p-wells. The oxide of TypeB consists of the thick field oxide, while that of TypeC consists of the thermal oxide corresponding to the gate oxide in the DIMOS. In the TypeD structure, n+ region corresponding to the source in the DIMOS was added by the P+ I/I. The TypeD is the same structure of the DIMOS, except that the gate and source contacts are shorted. The V-I measurements of the pn junctions are performed using the KEITHLEY 237 voltage source meters with semi-auto probe machine. An active area of the fabricated pn junctions TEGs are 150um2 and 1mm2. Concentration and thickness of the drift layer are 1e16cm−3 and 10um, respectively.In order to compare the V-I characteristics of fabricated pn junctions with their defects information that obtained from x-ray topography measurements directly, the grid patterns are formed before the fabrication. The grid patterns were formed over the 2inch wafer by the SiC etching. The synchrotron x-ray topography measurements are carried out at the Beam-Line 15C in Photon-Factory in High-Energy-Accelerator-Research-Organization. Three diffraction conditions, g=11-28, -1-128, and 1-108, are chosen in grazing-incidence geometry (improved Berg-Barrett method).In the presentation, the V-I characteristics mapping on the 2inch wafer for each pn junctions, and the comparison of V-I characteristics with x-ray topography will be reported.


Author(s):  
Tao Luo ◽  
LiangMin Wang ◽  
ShangNan Yin ◽  
Hao Shentu ◽  
Hui Zhao

AbstractEdge computing has developed rapidly in recent years due to its advantages of low bandwidth overhead and low delay, but it also brings challenges in data security and privacy. Website fingerprinting (WF) is a passive traffic analysis attack that threatens website privacy which poses a great threat to user’s privacy and web security. It collects network packets generated while a user accesses website, and then uses a series of techniques to discover patterns of network packets to infer the type of website user accesses. Many anonymous networks such as Tor can meet the need of hide identity from users in network activities, but they are also threatened by WF attacks. In this paper, we propose a website fingerprinting obfuscation method against intelligent fingerprinting attacks, called Random Bidirectional Padding (RBP). It is a novel website fingerprinting defense technology based on time sampling and random bidirectional packets padding, which can covert the real packets distribution to destroy the Inter-Arrival Time (IAT) features in the traffic sequence and increase the difference between the datasets with random bidirectional virtual packets padding. We evaluate the defense against state-of-the-art website fingerprinting attacks in real scenarios, and show its effectiveness.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2118
Author(s):  
Gwang Hui Choi ◽  
Taehui Na

Recently, the leakage power consumption of Internet of Things (IoT) devices has become a main issue to be tackled, due to the fact that the scaling of process technology increases the leakage current in the IoT devices having limited battery capacity, resulting in the reduction of battery lifetime. The most effective method to extend the battery lifetime is to shut-off the device during standby mode. For this reason, spin-transfer-torque magnetic-tunnel-junction (STT-MTJ) based nonvolatile flip-flop (NVFF) is being considered as a strong candidate to store the computing data. Since there is a risk that the MTJ resistance may change during the read operation (i.e., the read disturbance problem), NVFF should consider the read disturbance problem to satisfy reliable data restoration. To date, several NVFFs have been proposed. Even though they satisfy the target restore yield of 4σ, most of them do not take the read disturbance into account. Furthermore, several recently proposed NVFFs which focus on the offset-cancellation technique to improve the restore yield have obvious limitation with decreasing the supply voltage (VDD), because the offset-cancellation technique uses switch operation in the critical path that can exacerbate the restore yield in the near/sub-threshold region. In this regard, this paper analyzes state-of-the-art STT-MTJ based NVFFs with respect to the voltage region and provides insight that a simple circuit having no offset-cancellation technique could achieve a better restore yield in the near/sub-threshold voltage region. Monte–Carlo HSPICE simulation results, using industry-compatible 28 nm model parameters, show that in case of VDD of 0.6 V, complex NVFF circuits having offset tolerance characteristic have a better restore yield, whereas in case of VDD of 0.4 V with sizing up strategy, a simple NVFF circuit having no offset tolerance characteristic has a better restore yield.


Sign in / Sign up

Export Citation Format

Share Document