Planar Printed Electrodes for Electroporation with High EM Field Homogeneity

Author(s):  
Andjelija Ilić ◽  
Branko Bukvic ◽  
Maja Stojiljković ◽  
Anita Skakić ◽  
Sonja Pavlović ◽  
...  
Keyword(s):  
2012 ◽  
Vol 9 (1) ◽  
pp. 110-115
Author(s):  
L.A. Kovaleva ◽  
R.R. Zinnatullin ◽  
V.N. Blagochinnov ◽  
A.A. Musin ◽  
Yu.I. Fatkhullina ◽  
...  

Some results of experimental and numerical studies of the influence of radio-frequency (RF) and microwave (MW) electromagnetic (EM) fields on water-in-oil emulsions are presented. A detailed investigation of the dependence of the dielectric properties of emulsions on the frequency of the field makes it possible to establish the most effective frequency range of the EM influence. The results of water-in-oil emulsion stability in the RF EM field depending on their dielectric properties are presented. The effect of the MW EM field on the emulsion in a dynamic mode has been studied experimentally. In an attempt to understand the mechanism of emulsion destruction the mathematical model for a single emulsion droplet dynamics in radio-frequency (RF) and microwave (MW) electromagnetic fields is formulated.


2005 ◽  
Vol 295-296 ◽  
pp. 681-686 ◽  
Author(s):  
I. Frollo ◽  
P. Andris ◽  
I. Strolka ◽  
L. Bačiak

The scope of this paper is to demonstrate a least square method for optimisation of basic parameters for selected physical experiment design where large input parameter measurement and adjustment is needed. The speed of calculation and experimentally verified results are promising to use this method in many physical projects. We have demonstrated this method for computation of feeding currents of correcting coils for stationary magnetic field used in NMR imaging. A set of linear equation definition and determination of a target function and optimisation computations are presented with procedures that provide optimal values of currents for shim coils. The proposed method, because of its simplicity and speed of computation, is convenient for basic adjustment of the magnetic field homogeneity by the first magnet installation. It is also suitable for periodic testing and magnet inhomogeneity correction for MRI magnets.


Author(s):  
A. Liakouti ◽  
A. Benbassou ◽  
C. Pasquier ◽  
C. Faure ◽  
K. El Khamlichi Drissi ◽  
...  
Keyword(s):  

TECHNOLOGY ◽  
2018 ◽  
Vol 06 (02) ◽  
pp. 49-58
Author(s):  
Iman Dayarian ◽  
Timothy C.Y. Chan ◽  
David Jaffray ◽  
Teo Stanescu

Magnetic resonance imaging (MRI) is a powerful diagnostic tool that has become the imaging modality of choice for soft-tissue visualization in radiation therapy. Emerging technologies aim to integrate MRI with a medical linear accelerator to form novel cancer therapy systems (MR-linac), but the design of these systems to date relies on heuristic procedures. This paper develops an exact, optimization-based approach for magnet design that 1) incorporates the most accurate physics calculations to date, 2) determines precisely the relative spatial location, size, and current magnitude of the magnetic coils, 3) guarantees field homogeneity inside the imaging volume, 4) produces configurations that satisfy, for the first time, small-footprint feasibility constraints required for MR-linacs. Our approach leverages modern mixed-integer programming (MIP), enabling significant flexibility in magnet design generation, e.g., controlling the number of coils and enforcing symmetry between magnet poles. Our numerical results demonstrate the superiority of our method versus current mainstream methods.


Sign in / Sign up

Export Citation Format

Share Document