Theoretical perspective on the electronic structure and optoelectronic properties of type-II SiC/CrS2 van der Waals heterostructure with high carrier mobilities

Author(s):  
Anwar Ali ◽  
Jian-Min Zhang ◽  
Iltaf Muhammad ◽  
Ismail Shahid ◽  
Yuhong Huang ◽  
...  
2020 ◽  
Vol 534 ◽  
pp. 147607 ◽  
Author(s):  
Mohammed M. Obeid ◽  
Asadollah Bafekry ◽  
Sajid Ur Rehman ◽  
Chuong V. Nguyen

2021 ◽  
Vol 23 (6) ◽  
pp. 3963-3973
Author(s):  
Jianxun Song ◽  
Hua Zheng ◽  
Minxia Liu ◽  
Geng Zhang ◽  
Dongxiong Ling ◽  
...  

The structural, electronic and optical properties of a new vdW heterostructure, C2N/g-ZnO, with an intrinsic type-II band alignment and a direct bandgap of 0.89 eV at the Γ point are extensively studied by DFT calculations.


2019 ◽  
Vol 716 ◽  
pp. 155-161 ◽  
Author(s):  
Khang D. Pham ◽  
Nguyen N. Hieu ◽  
Le M. Bui ◽  
Huynh V. Phuc ◽  
Bui D. Hoi ◽  
...  

2D Materials ◽  
2021 ◽  
Author(s):  
Maanwinder P. Singh ◽  
Jonas Kiemle ◽  
Ilkay Ozdemir ◽  
Philipp Zimmermann ◽  
Takashi Taniguchi ◽  
...  

Abstract We address the impact of crystal phase disorder on the generation of helicity-dependent photocurrents in layered MoTe2, which is one of the van der Waals materials to realize the topological type-II Weyl semimetal phase. Using scanning photocurrent microscopy, we spatially probe the phase transition and its hysteresis between the centrosymmetric, monoclinic 1T’ phase to the symmetry-broken, orthorhombic Td phase as a function of temperature. We find a highly disordered photocurrent response in the intermediate temperature regime. Moreover, we demonstrate that helicity-dependent and ultrafast photocurrents in MoTe2 arise most likely from a local breaking of the electronic symmetries. Our results highlight the prospects of local domain morphologies and ultrafast relaxation dynamics on the optoelectronic properties of low-dimensional van der Waals circuits.


Sign in / Sign up

Export Citation Format

Share Document