Radiation Modulated Spin coupling in double-stranded DNA model

Author(s):  
Alexander Lopez ◽  
Solmar Varela ◽  
Ernesto Medina

Abstract The spin activity in macromolecules such as DNA and oligopeptides, in the context of the Chiral Induced Spin Selectivity (CISS) has been proposed to be due to the atomic Spin-Orbit Coupling (SOC) and the associated chiral symmetry of the structures. This coupling, associated with carbon, nitrogen, and oxygen atoms in biological molecules, albeit small (meV), can be enhanced by the geometry, and strong local polarization effects such as hydrogen bonding (HB). A novel way to manipulate the spin degree of freedom is by modifying the spectrum using a coupling to the appropriate electromagnetic radiation field. Here we use the Floquet formalism in order to show how the half-filled band Hamiltonian for DNA, can be modulated by the radiation to produce up to a tenfold increase of the effective SOC once the intrinsic coupling is present. On the other hand, the chiral model, once incorporating the orbital angular momentum of electron motion on the helix, opens a gap for different helicity states (helicity splitting) that chooses spin polarization according to transport direction and chirality, without breaking time-reversal symmetry. The observed effects are feasible in physically reasonable parameter ranges for the radiation field amplitude and frequency.

Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
S. Cusack ◽  
J.-C. Jésior

Three-dimensional reconstruction techniques using electron microscopy have been principally developed for application to 2-D arrays (i.e. monolayers) of biological molecules and symmetrical single particles (e.g. helical viruses). However many biological molecules that crystallise form multilayered microcrystals which are unsuitable for study by either the standard methods of 3-D reconstruction or, because of their size, by X-ray crystallography. The grid sectioning technique enables a number of different projections of such microcrystals to be obtained in well defined directions (e.g. parallel to crystal axes) and poses the problem of how best these projections can be used to reconstruct the packing and shape of the molecules forming the microcrystal.Given sufficient projections there may be enough information to do a crystallographic reconstruction in Fourier space. We however have considered the situation where only a limited number of projections are available, as for example in the case of catalase platelets where three orthogonal and two diagonal projections have been obtained (Fig. 1).


Author(s):  
S. W. Hui ◽  
T. P. Stewart

Direct electron microscopic study of biological molecules has been hampered by such factors as radiation damage, lack of contrast and vacuum drying. In certain cases, however, the difficulties may be overcome by using redundent structural information from repeating units and by various specimen preservation methods. With bilayers of phospholipids in which both the solid and fluid phases co-exist, the ordering of the hydrocarbon chains may be utilized to form diffraction contrast images. Domains of different molecular packings may be recgnizable by placing properly chosen filters in the diffraction plane. These domains would correspond to those observed by freeze fracture, if certain distinctive undulating patterns are associated with certain molecular packing, as suggested by X-ray diffraction studies. By using an environmental stage, we were able to directly observe these domains in bilayers of mixed phospholipids at various temperatures at which their phases change from misible to inmissible states.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

In vitro collapse of DNA by trivalent cations like spermidine produces torus (donut) shaped DNA structures thought to have a DNA organization similar to certain double stranded DNA bacteriophage and viruses. This has prompted our studies of these structures using freeze-etch low Pt-C metal (9Å) replica TEM. With a variety of DNAs the TEM and biochemical data support a circumferential DNA winding model for hydrated DNA torus organization. Since toruses are almost invariably oriented nearly horizontal to the ice surface one of the most accessible parameters of a torus population is annulus (ring) thickness. We have tabulated this parameter for populations of both nicked, circular (Fig. 1: n=63) and linear (n=40: data not shown) ϕX-174 DNA toruses. In both cases, as can be noted in Fig. 1, there appears to be a compact grouping of toruses possessing smaller dimensions separated from a dispersed population possessing considerably larger dimensions.


Author(s):  
Ray Wu ◽  
G. Ruben ◽  
B. Siegel ◽  
P. Spielman ◽  
E. Jay

A method for determining long nucleotide sequences of double-stranded DNA is being developed. It involves (a) the synchronous digestion of the DNA from the 3' ends with EL coli exonuclease III (Exo III) followed by (b) resynthesis with labeled nucleotides and DNA polymerase. A crucial factor in the success of this method is the degree to which the enzyme digestion proceeds synchronously under proper conditions of incubation (step a). Dark field EM is used to obtain accurate measurements on the lengths and distribution of the DNA molecules before and after digestion with Exo III, while gel electrophoresis is used in parallel to obtain a mean length for these molecules. It is the measurements on a large enough sample of individual molecules by EM that provides the information on how synchronously the digestion proceeds. For length measurements, the DNA molecules were picked up on 20-30 Å thick carbon-aluminum films, using the aqueous Kleinschmidt technique and stained with 7.5 x 10-5M uranyl acetate in 90% ethanol for 3 minutes.


Author(s):  
Michael F. Smith ◽  
John P. Langmore

The purpose of image reconstruction is to determine the mass densities within molecules by analysis of the intensities within images. Cryo-EM offers this possibility by virtue of the excellent preservation of internal structure without heavy atom staining. Cryo-EM images, however, have low contrast because of the similarity between the density of biological material and the density of vitreous ice. The images also contain a high background of inelastic scattering. To overcome the low signal and high background, cryo-images are typically recorded 1-3 μm underfocus to maximize phase contrast. Under those conditions the image intensities bear little resemblance to the object, due to the dependence of the contrast transfer function (CTF) upon spatial frequency. Compensation (i.e., correction) for the CTF is theoretically possible, but implementation has been rare. Despite numerous studies of molecules in ice, there has never been a quantitative evaluation of compensated images of biological molecules of known structure.


Author(s):  
George C. Ruben ◽  
Kenneth A. Marx

Certain double stranded DNA bacteriophage and viruses are thought to have their DNA organized into large torus shaped structures. Morphologically, these poorly understood biological DNA tertiary structures resemble spermidine-condensed DNA complexes formed in vitro in the total absence of other macromolecules normally synthesized by the pathogens for the purpose of their own DNA packaging. Therefore, we have studied the tertiary structure of these self-assembling torus shaped spermidine- DNA complexes in a series of reports. Using freeze-etch, low Pt-C metal (10-15Å) replicas, we have visualized the microscopic DNA organization of both calf Thymus( CT) and linear 0X-174 RFII DNA toruses. In these structures DNA is circumferentially wound, continuously, around the torus into a semi-crystalline, hexagonal packed array of parallel DNA helix sections.


Author(s):  
James F. Hainfeld ◽  
Daniel Safer ◽  
Joseph S. Wall ◽  
Martha Simon ◽  
Beth Lin ◽  
...  

Uranyl and tungstate compounds have found favor as negative stains because of their high scattering power relative to biological molecules. However, other properties, such as specimen preservation, resistance to alterations or crystallization in the electron beam, and signal to noise (S/N) ratio, are also important. It may be that lower density materials may have advantages in these areas. A new negative stain, methylamine vanadate, CH3 NH2.VO3 ("NanoVan"), offers a near physiological pH of 8, similar to phosphotungstate (pH 7) with much smoother background. It is also very stable in the electron beam with minimal granulation at a dose of l04 el / nm2 . The resolution obtainable with vanadate appears to be comparable to uranyl at low dose, but superior at higher dose where uranyl forms coarse grains (see Fig. 1). Problems with uranyl such as unwanted positive staining and need for pH below 4 can be avoided. The lower contrast permits use of thicker stain embedment for better preservation and less flattening without excessive beam attenuation.


1997 ◽  
Vol 91 (5) ◽  
pp. 897-907 ◽  
Author(s):  
SHEELA KIRPEKAR ◽  
THOMAS ENEVOLDSEN ◽  
JENS ODDERSHEDE ◽  
WILLIAM RAYNES

2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


Sign in / Sign up

Export Citation Format

Share Document