Use of effective dose to assess x-ray protective clothing

2021 ◽  
Vol 41 (4) ◽  
pp. R140-R151
Author(s):  
Heinrich Eder ◽  
Helmut Schlattl

Abstract This review article provides an overview on the results of studies conducted by the authors to improve the current personal protection concept in the clinical application of x-rays. With the aid of personal dose equivalent measurements during radiologically guided clinical interventions, laboratory tests using the Alderson-Rando phantom as well as Monte Carlo simulations various x-ray application scenarios were investigated. The organ doses and the effective doses of staff persons standing near the patient were determined. The 3D-attenuation properties of protective clothing under the scattered radiation emitted by the patient play a special role here. With regard to the minimisation of the quantity ‘effective dose’ the protection of the lower body from the gonads to the chest is of particular importance, since 80% of the effective dose is contributed by this region of the body. In contrast, protection of the back plays a subordinate role. Protective aprons optimised in terms of effective dose can be significantly lighter than conventional aprons, providing equal protection. The assessment of the attenuation properties of protective clothing should be based on the risk-related dose quantity, effective dose, rather than lead equivalent. In the future, the evaluation of radiation protective clothing could be based on the calculation of the effective dose assuming standardised irradiation conditions.

2019 ◽  
Vol 186 (2-3) ◽  
pp. 386-390
Author(s):  
V Dufek ◽  
H Zackova ◽  
L Kotik ◽  
I Horakova

Abstract About 26 000 patients are treated per year with radiotherapy for non-malignant diseases in the Czech Republic. Approximately 75% of them are treated on X-ray therapy units and most of these patients undergo radiotherapy of heel spurs. The evaluation of radiation exposure of these patients was based on measured organ doses and on data from clinical practice. Collective effective doses for particular diagnoses were calculated in order to compare doses resulting from different diagnoses treated on X-ray therapy units. The collective effective dose from radiotherapy of heel spurs in the Czech Republic in 2013 was evaluated to 77 manSv. It represents 25.6% of the total collective effective dose for all diagnoses of radiotherapy for non-malignant diseases treated on X-ray therapy units.


1964 ◽  
Vol 19 (10) ◽  
pp. 929-935 ◽  
Author(s):  
Sigrid Hempel ◽  
Wolfgang Laskowski

A diploid Saccaromyces strain was treated with several doses of X-rays, UV and succinic acid peroxyde (BPO). The inactivation of the ability to form macroscopic colonies as well as the ability to form microcolonies of at least two cells to a few hundred cells has been compared with the inactivation of respiration and fermentation intensity. If the inactivation of macroscopic colony formation is taken as a measure of the effective dose applied, the formation of at least one daughter cell as well as respiration and fermentation intensity is reduced to approximately the same extent after BPO and X-ray treatment. In the latter case, however, much higher effective doses have to be applied and a distinct difference between respiration and fermentation sensitivity is observed. After UV-treatment the formation of at least one daughter cell is exceedingly more sensitive than the fermentation processes. The respiration processes behave most UV resistant. Possible reasons for the observed different relative sensitivities are discussed.


2018 ◽  
Vol 183 (4) ◽  
pp. 529-534
Author(s):  
Toshio Kawasaki ◽  
Masami Sakakubo ◽  
Kanako Ito

Abstract The present study evaluated the organ and effective doses in infant diagnostic cardiac catheterisation performed using a modern x-ray imaging unit by in-phantom dosimetry. In addition, conversion factors from dose–area product (DAP) to effective dose were determined. The organ and effective doses in 1-year old during diagnostic cardiac catheterisations were measured using radiophotoluminescence glass dosemeters implanted into an infant anthropomorphic phantom. The mean effective doses, evaluated according to the International Commission on Radiologic Protection Publication 103, were 4.0 mSv (range: 1.5–8.7 mSv). The conversion factors from DAP to effective dose were 2 and 3.5 mSv (Gy cm2)−1 for posteroanterior and lateral fluoroscopy, respectively, and 1.8 and 3.3 mSv (Gy cm2)−1 for posteroanterior and lateral cineangiography, respectively. The dose data and conversion factors evaluated in the present study may be useful for estimating radiation exposure in infants during diagnostic cardiac catheterisation.


2012 ◽  
Vol 41 (3-4) ◽  
pp. 129-141 ◽  
Author(s):  
M.I. Balonov ◽  
P.C. Shrimpton

The radiation risks from a range of medical x-ray examinations (radiography, fluoroscopy, and computed tomography) were assessed as a function of the age and sex of the patient using risk models described in Publication 103 (ICRP, 2007) and UNSCEAR (2006, Annex A). Such estimates of risk based on typical organ doses were compared with those derived from effective doses using the International Commission on Radiological Protection's nominal risk coefficients. Methodologically similar but not identical dose and risk calculations were performed independently at the Institute of Radiation Hygiene (Russia) and the Health Protection Agency (UK), and led to similar conclusions. The radiogenic risk of stochastic health effects following various x-ray procedures varied significantly with the patient's age and sex, but to differing degrees depending on which body organs were irradiated. In general, the risks of radiation-induced stochastic health effects in children are estimated to be higher (by a factor of ⩽4) than in adults, and risks in senior patients are lower by a factor of ⩾10 relative to younger people. If risks are assessed on the basis of effective dose, they are underestimated for children of both sexes by a factor of ⩽4. This approach overestimates risks by a factor of ⩽3 for adults and about an order of magnitude for senior patients. The significant sex and age dependence of radiogenic risk for different cancer types is an important consideration for radiologists when planning x-ray examinations. Whereas effective dose was not intended to provide a measure of risk associated with such examinations, it may be sufficient to make simple adjustments to the nominal risk per unit effective dose to account for age and sex differences.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ernest K. Osei ◽  
Johnson Darko

The quantification of radiation risks associated with radiological examinations has been a subject of interest with the increased use of X-rays. Effective dose, which is a risk-weighted measure of radiation to organs in the body associated with radiological examination, is considered a good indicator of radiological risk. We have therefore investigated patient effective doses from radiological examinations. Organ and effective doses were estimated for 94 patients who underwent computed tomography examinations and for 338 patients who had conventional radiography examinations. The OrgDose (version 2) program was used for the estimation of effective doses. The tube potential ranges: 57 kVp to 138 kVp depending on the examination and patient size. The entrance surface doses have a wide range even for the same examination: 0.44–10.31 mGy (abdomen) and 0.66–16.08 mGy (lumbar spine) and the corresponding effective dose ranges 0.025–0.77 mSv and 0.025–0.95 mSv respectively. Effective dose for adult abdomen-pelvic CT examinations ranges 5.4–19.8 mSv with a mean of 13.6 mSv and for pediatrics ranges 2.1–5.5 mSv with a mean of 2.7 mSv. The mean effective dose for adult chest and head CT examinations are 7.9 and 1.8 mSv respectively and for pediatrics are 1.7 and 1.1 mSv.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


1989 ◽  
Vol 30 (2) ◽  
pp. 201-206 ◽  
Author(s):  
K. Geterud ◽  
A. Larsson ◽  
S. Mattsson

The radiation dose to patients and personnel was estimated during 11 percutaneous renal stone extractions. For the patients the energy imparted, the mean absorbed dose to various organs, and the effective dose equivalent were estimated. For different personnel categories some organ doses and the effective dose equivalent were also estimated. Large differences in the radiation dose between patients were observed. The mean effective dose equivalent to the patient was 4.2 (range 0.6–8.3) mSv, and the energy imparted 285 (range 50–500) mJ. These figures are comparable to those reported for routine colon examination and urography. For the personnel there were also large differences between individuals and categories. The highest radiation dose was received by the radiologist. It was estimated that a radiologist who performs 150 percutaneous renal stone extractions per year will receive a yearly contribution to his/her effective dose equivalent of 2.4 mSv. Even when the contribution from other diagnostic and interventional radiologic procedures is added, the total effective dose equivalent hardly exceeds 5 mSv or 1/10 of the present dose limit for persons engaged in radiologic work. For the hands of the radiologist there is a risk of doses closer to the present limit for single organs or tissues of 500 mSv/year.


Sign in / Sign up

Export Citation Format

Share Document