In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties

2019 ◽  
Vol 30 (47) ◽  
pp. 475708 ◽  
Author(s):  
Peifeng Li ◽  
Ke Cao ◽  
Chenchen Jiang ◽  
Shang Xu ◽  
Libo Gao ◽  
...  
2019 ◽  
Vol 814 ◽  
pp. 90-95 ◽  
Author(s):  
Guang Lei Lv ◽  
Yuan Yuan Li ◽  
Chen Fei ◽  
Zhi Hao Shan ◽  
Jing Gan ◽  
...  

Graphene nanosheets/polyurethane (GNS/PU) was prepared in situ by polymerization technique for the manufacture of PU safety shoes soles. The graphene nanosheets/polyurethane composites were characterized for their mechanical properties, thermal conductivity and abrasion resistance, and comparison is made with those of the neat polyurethane. The microstructural properties of GNS/PU were characterized by SEM. The results show that with the increase of the amount of graphene within the range of weight-percentages analyzed, the tensile strength of the composites gradually increases. The tensile strength of the GNS/PU composites increased to 64.14 MPa with 2 wt% GNS, compared with 55.1 MPa for neat PU. When the graphene sheets reached 2 wt%, the abrasion volume reached 71 mm3. Compared with the pure PU, the wear performance of GNS/PU composites was significantly improved.


2019 ◽  
Vol 53 (24) ◽  
pp. 3459-3468
Author(s):  
Elnaz Esmizadeh ◽  
Mostafa Arjmandpour ◽  
A Vahidifar ◽  
Ghasem Naderi ◽  
Charles Dubois

Inexpensive approach to fully disperse graphene nanosheet (GNS) in silicone rubber (SR) by the addition of (3-Aminopropyl) triethoxysilane (APTES) as the coupling agent is presented in this study. The effects of GNS loading and presence of APTES on the cure characteristics, dynamic-mechanical, rheological and mechanical properties of the resulting SR compounds were systematically studied by rheometry, DMTA and tensile testing, respectively. The obtained results were correlated with the microstructure of the samples investigated by SEM and TEM analyses. Vulcanization curves revealed that the GNS and the coupling agent had an accelerating effect on the cure kinetics of the SR compounds leading to a steady decrease in scorch time and optimum cure time along with a gradual increase in the effective torque value. Morphological results showed that the GNSs could disperse more homogeneously within SR matrix using a simple solution mixing approach by in-situ loading of APTES. DMTA results showed restricted relaxation processes in GNS-reinforced SR systems in comparison with the pure SR, with more pronounced effect for the system containing APTES owing to improved interactions between graphene and SR which prevented the molecular mobility of neighboring chains of SR matrix. The tensile data demonstrated about 20% rise of modulus in the GNS-filled rubber nanocomposites in the presence of APTES. Low-frequency rheological properties including the storage modulus (G′), the loss modulus (G″), and complex shear viscosity (η*) showed a significant increase of about 10-fold, 75% and 20%, respectively, with the incorporation of APTES and GNS. Thus it could be expected that APTES had a substantial potential to be applied in-situ as the coupling agent to fabricate SR/GNS nanocomposites with exfoliated GNS morphology and increased the rheological and mechanical properties.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110407
Author(s):  
Zhao Dong ◽  
Kang Yang ◽  
Feizhi Zhang

Requirements of low energy consumption and material-volume reduction in the aerospace industry have spurred improvements of mechanical and tribological behaviors of TiAl (TA) alloys. TA-graphene (TAG) has poorer mechanical properties (6.02 ± 0.42 GPa nano-hardness, 150 ± 12.32 GPa elasticity modulus, and 802 ± 21 MPa yield strength) than (6.25 ± 0.52 GPa nano-hardness, 159 ± 14.21 GPa elasticity modulus, and 850 ± 19 MPa yield strength) of TA-graphene-silver (TAGS). Multilayer graphene nanosheets were curled into small loops to resist the applied forces, and helped to improve the mechanical properties of the TAGS. Subsequently, the graphene nanosheets enhanced the tribological performances as observed by the ball-on-disk tribometer. The following factors were primarily responsible for more excellent tribological behaviors (approximately 0.27 friction coefficient, 2.82 × 10−4 mm3 N−1 m−1 wear rate) of TAGS than those of the TAG: intra-lamellar separation of graphene, graphene-enhanced capacity of wear scar, plastic deformation of silver, the excellent cooperation lubrication of graphene-silver, the low-hardness lubrication film on the grain-refined layer, the well-distributed film grain, and low grain orientation angles.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


2018 ◽  
Vol 60 (12) ◽  
pp. 1221-1224 ◽  
Author(s):  
Balachandran Gobalakrishnan ◽  
P. Ramadoss Lakshminarayanan ◽  
Raju Varahamoorthi

Sign in / Sign up

Export Citation Format

Share Document