Watermelon-like TiO2 nanoparticle (P25)@microporous amorphous carbon sphere with excellent rate capability and cycling performance for lithium-ion batteries

2020 ◽  
Vol 31 (21) ◽  
pp. 215407 ◽  
Author(s):  
Y Q Zheng ◽  
Y F Yuan ◽  
Z W Tong ◽  
H Yin ◽  
S M Yin ◽  
...  
2014 ◽  
Vol 2 (32) ◽  
pp. 13069-13074 ◽  
Author(s):  
Xin Xu ◽  
Bitao Dong ◽  
Shujiang Ding ◽  
Chunhui Xiao ◽  
Demei Yu

NiCoO2 nanosheets@amorphous CNT composites show enhanced cycling performance and rate capability as anode materials for lithium-ion batteries.


2015 ◽  
Vol 3 (7) ◽  
pp. 3962-3967 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Fathy M. Hassan ◽  
Matthew Li ◽  
Kun Feng ◽  
...  

High-performance robust CNT–graphene–Si composites are designed as anode materials with enhanced rate capability and excellent cycling stability for lithium-ion batteries. Such an improvement is mainly attributed to the robust sponge-like architecture, which holds great promise in future practical applications.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


2019 ◽  
Vol 43 (3) ◽  
pp. 1238-1246 ◽  
Author(s):  
Duo Zhang ◽  
Chaoqi Bi ◽  
Qingliu Wu ◽  
Guangya Hou ◽  
Guoqu Zheng ◽  
...  

It is a challenge to commercialize tin dioxide-based anodes for lithium-ion batteries due to their low rate capability and poor cycling performance of the electrodes.


2015 ◽  
Vol 3 (9) ◽  
pp. 5054-5059 ◽  
Author(s):  
Chang Yu ◽  
Meng Chen ◽  
Xiaoju Li ◽  
Changtai Zhao ◽  
Lianlong He ◽  
...  

Hierarchically porous carbon architectures composed of a micro-sized porous carbon sphere matrix embedded with hollow nanocapsules are configured, demonstrating a large capacity and an ultra-high rate capability in lithium ion batteries.


2015 ◽  
Vol 3 (12) ◽  
pp. 6392-6401 ◽  
Author(s):  
Bangjun Guo ◽  
Ke Yu ◽  
Hao Fu ◽  
Qiqi Hua ◽  
Ruijuan Qi ◽  
...  

Firework-shaped TiO2 microspheres embedded with few-layer MoS2 are prepared by a novel strategy, and the composite electrode exhibits excellent cycling performance, high capacity and rate capability compared to pure MoS2 and TiO2 electrodes.


RSC Advances ◽  
2016 ◽  
Vol 6 (5) ◽  
pp. 4193-4199 ◽  
Author(s):  
Litian Dong ◽  
Guowen Wang ◽  
Xifei Li ◽  
Dongbin Xiong ◽  
Bo Yan ◽  
...  

Co-embedded carbon nanofibers were synthesized using electrospinning with polyvinylpyrrolidone instead of high cost polyacrylonitrile. The nanocomposites deliver enhanced cycling performance and rate capability in lithium ion batteries.


NANO ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. 2050128 ◽  
Author(s):  
Ruirui Gao ◽  
Suqin Wang ◽  
Zhaoxiu Xu ◽  
Hongbo Li ◽  
Shuiliang Chen ◽  
...  

In this work, we developed a simple one-step hydrothermal method to successfully prepare Fe3O4/FeS-reduced graphene oxide (Fe3O4/FeS/rGO) composite directly, which is a novel Lithium-ion batteries (LIBs) anode material. The characterization of Fe3O4/FeS/rGO composite demonstrates that octahedral Fe3O4/FeS particles are uniformly deposited on the rGO, leading to a strong synergy between them. The excellent structural design can make Fe3O4/FeS/rGO composite to have higher reversible capacity (744.7[Formula: see text]mAh/g at 0.1[Formula: see text]C after 50 cycles), excellent cycling performance and superior rate capability. This outstanding electrochemical behavior can be attributed to the conductivity network of rGO, which improves the composite electrode conductivity, facilitates the diffusion and transfer of ions and prevents the aggregation and pulverization of Fe3O4/FeS particles during the charging and discharging processes. Moreover, the Fe3O4/FeS/rGO electrode surface is covered with a thin solid-electrolyte interface (SEI) film and the octahedral structure of Fe3O4/FeS particles is still clearly visible, which indicates that composite electrode has excellent interface stability. We believe that the design of this composite structure will provide a new perspective for the further study of other transition metal oxides for LIBs.


RSC Advances ◽  
2015 ◽  
Vol 5 (128) ◽  
pp. 105643-105650 ◽  
Author(s):  
Yongliang Li ◽  
Wei Zhang ◽  
Huihua Cai ◽  
Jingwei Wang ◽  
Xiangzhong Ren ◽  
...  

The addition of ZnO significantly improved the cycling performance and rate capability of SnSb alloy anode material.


Sign in / Sign up

Export Citation Format

Share Document