Flexible strain sensor with high sensitivity, fast response, and good sensing range for wearable applications

2021 ◽  
Author(s):  
Suresh Nuthalapati ◽  
Vaishakh Kedambaimoole ◽  
Vijay Shirhatti ◽  
Saurabh Kumar ◽  
Hidekuni Takao ◽  
...  
2021 ◽  
pp. 004051752110441
Author(s):  
Qinghua Yu ◽  
Jinhua Jiang ◽  
Chuanli Su ◽  
Yaoli Huang ◽  
Nanliang Chen ◽  
...  

Flexible wearable strain sensors with excellent sensing performance have received widespread interest due to their superior application capability in the field of human-computer interaction, sports rehabilitation, and disease diagnosis. But at present, it is still a considerable challenge to exploit a flexible strain sensor with high sensitivity and wide sensing range that is easily manufactured, low-cost, and easily integrable into clothing. MXene is a promising material sensitive enough for flexible sensors due to its superior conductivity and hydrophilicity. The warp knitting weft insertion textile structure gives the fabric excellent elasticity, making it suitable as a flexible, stretchable substrate. Therefore, utilizing a polyester elastic fabric with a warp knitting weft insertion structure, a fabric strain sensor with high sensitivity and wide sensing range prepared by layer-by-layer self-assembly of polyvinyl alcohol layers and MXene layers is reported in this study. The strain sensor exhibits high sensitivity (up to 288.43), a wide sensing range (up to 50%), fast response time (50 ms), ultra-low detection limit (a strain of 0.067%), excellent cycle stability (1000 cycles), and good washability. Besides, affixing the MXene/polyvinyl alcohol/polyester elastic fabric strain sensor on the joints can detect the movement of limbs. Therefore, the MXene/polyvinyl alcohol/polyester elastic fabric strain sensor demonstrates potential application opportunities in smart wearable electronic devices, and the researcher can also apply this method in the production of other flexible, intelligent wearable devices.


Author(s):  
Bingbing Xu ◽  
Feng Ye ◽  
Ronghu Chen ◽  
Xiaogang Luo ◽  
Guangtao Chang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1077 ◽  
Author(s):  
Wei Xu ◽  
Tingting Yang ◽  
Feng Qin ◽  
Dongdong Gong ◽  
Yijia Du ◽  
...  

Flexible strain sensors have a wide range of applications in biomedical science, aerospace industry, portable devices, precise manufacturing, etc. However, the manufacturing processes of most flexible strain sensors previously reported have usually required high manufacturing costs and harsh experimental conditions. Besides, research interests are often focused on improving a single attribute parameter while ignoring others. This work aims to propose a simple method of manufacturing flexible graphene-based strain sensors with high sensitivity and fast response. Firstly, oxygen plasma treats the substrate to improve the interfacial interaction between graphene and the substrate, thereby improving device performance. The graphene solution is then sprayed using a soft PET mask to define a pattern for making the sensitive layer. This flexible strain sensor exhibits high sensitivity (gauge factor ~100 at 1% strain), fast response (response time: 400–700 μs), good stability (1000 cycles), and low overshoot (<5%) as well. Those processes used are compatible with a variety of complexly curved substrates and is expected to broaden the application of flexible strain sensors.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


2021 ◽  
Vol 25 ◽  
pp. 101247
Author(s):  
Duorui Wang ◽  
Xiangming Li ◽  
Hongmiao Tian ◽  
Xiaoliang Chen ◽  
Bangbang Nie ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6588
Author(s):  
Jun Ho Lee ◽  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jae Cheol Shin ◽  
Jeong-Wan Jo ◽  
...  

For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa−1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa−1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6965
Author(s):  
Minho Seong ◽  
Insol Hwang ◽  
Joosung Lee ◽  
Hoon Eui Jeong

Flexible tactile sensors are required to maintain conformal contact with target objects and to differentiate different tactile stimuli such as strain and pressure to achieve high sensing performance. However, many existing tactile sensors do not have the ability to distinguish strain from pressure. Moreover, because they lack intrinsic adhesion capability, they require additional adhesive tapes for surface attachment. Herein, we present a self-attachable, pressure-insensitive strain sensor that can firmly adhere to target objects and selectively perceive tensile strain with high sensitivity. The proposed strain sensor is mainly composed of a bioinspired micropillar adhesive layer and a selectively coated active carbon nanotube (CNT) layer. We show that the bioinspired adhesive layer enables strong self-attachment of the sensor to diverse planar and nonplanar surfaces with a maximum adhesion strength of 257 kPa, while the thin film configuration of the patterned CNT layer enables high strain sensitivity (gauge factor (GF) of 2.26) and pressure insensitivity.


2020 ◽  
Vol 8 (39) ◽  
pp. 20531-20542
Author(s):  
Shuhua Peng ◽  
Shuying Wu ◽  
Yuyan Yu ◽  
Philippe Blanloeuil ◽  
Chun H. Wang

A new highly sensitive and stretchable strain sensor with excellent linearity and optical transparency has been developed by toughening of microcracks within the thin conductive films.


Sign in / Sign up

Export Citation Format

Share Document