Electron beam analysis induces Cl vacancy defects in a NaCl thin film

2021 ◽  
Author(s):  
Khalid Quertite ◽  
Hanna Enriquez ◽  
Nicolas Trcera ◽  
Azzedine Bendounan ◽  
Andrew Mayne ◽  
...  

Abstract This work reports on the electron-induced modification of NaCl thin film grown on Ag(110). We show using low energy electron diffraction (LEED) that electron beam bombardment leads to desorption and formation of Cl vacancy defects on NaCl surface. The topographic structure of these defects is studied using scanning tunneling microscopy (STM) showing the Cl defects as depressions on the NaCl surface. Most of the observed defects are mono-atomic vacancies and are located on flat NaCl terraces. Auger electron spectroscopy confirms the effect of electron exposure on NaCl thin films showing Cl atoms desorption from the surface. Using density functional theory (DFT) taken into account the van der Waals dispersion interactions, we confirm the observed experimental STM measurements with STM simulation. Furthermore, Comparing the adsorption of defect free NaCl and defective NaCl monolayer on Ag(110) surfaces, we found an increase of the adhesion energy and the charge transfer between the NaCl film and the substrate due to the Cl vacancy. In details, the adhesion energy increases between the NaCl film and the metallic Ag substrate from 30.4 〖meVÅ〗^(-2) for the NaCl film without Cl vacancy and from 39.5 〖meVÅ〗^(-2) for NaCl film with a single Cl vacancy. The charge transfer from the NaCl film to the Ag substrate is enhanced when the vacancy is created, from 0.63e- to 1.25e-.

2009 ◽  
Vol 80 (24) ◽  
Author(s):  
Jan Frederik Jerratsch ◽  
Niklas Nilius ◽  
Hans-Joachim Freund ◽  
Umberto Martinez ◽  
Livia Giordano ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. eaaw8989 ◽  
Author(s):  
Maxim Ziatdinov ◽  
Ondrej Dyck ◽  
Xin Li ◽  
Bobby G. Sumpter ◽  
Stephen Jesse ◽  
...  

The presence and configurations of defects are primary components determining materials functionality. Their population and distribution are often nonergodic and dependent on synthesis history, and therefore rarely amenable to direct theoretical prediction. Here, dynamic electron beam–induced transformations in Si deposited on a graphene monolayer are used to create libraries of possible Si and carbon vacancy defects. Deep learning networks are developed for automated image analysis and recognition of the defects, creating a library of (meta) stable defect configurations. Density functional theory is used to estimate atomically resolved scanning tunneling microscopy (STM) signatures of the classified defects from the created library, allowing identification of several defect types across imaging platforms. This approach allows automatic creation of defect libraries in solids, exploring the metastable configurations always present in real materials, and correlative studies with other atomically resolved techniques, providing comprehensive insight into defect functionalities.


2018 ◽  
Author(s):  
Kun Wang ◽  
Andrea Vezzoli ◽  
Iain Grace ◽  
Maeve McLaughlin ◽  
Richard Nichols ◽  
...  

We have used scanning tunneling microscopy to create and study single molecule junctions with thioether-terminated oligothiophene molecules. We find that the conductance of these junctions increases upon formation of charge transfer complexes of the molecules with tetracyanoethene, and that the extent of the conductance increase is greater the longer is the oligothiophene, i.e. the lower is the conductance of the uncomplexed molecule in the junction. We use non-equilibrium Green's function transport calculations to explore the reasons for this theoretically, and find that new resonances appear in the transmission function, pinned close to the Fermi energy of the contacts, as a consequence of the charge transfer interaction. This is an example of a room temperature quantum interference effect, which in this case boosts junction conductance in contrast to earlier observations of QI that result in diminished conductance.<br>


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Kuanysh Zhussupbekov ◽  
Lida Ansari ◽  
John B. McManus ◽  
Ainur Zhussupbekova ◽  
Igor V. Shvets ◽  
...  

AbstractThe properties and performance of two-dimensional (2D) materials can be greatly affected by point defects. PtTe2, a 2D material that belongs to the group 10 transition metal dichalcogenides, is a type-II Dirac semimetal, which has gained a lot of attention recently due to its potential for applications in catalysis, photonics, and spintronics. Here, we provide an experimental and theoretical investigation of point defects on and near the surface of PtTe2. Using scanning tunneling microscopy and scanning tunneling spectroscopy (STS) measurements, in combination with first-principle calculations, we identify and characterize five common surface and subsurface point defects. The influence of these defects on the electronic structure of PtTe2 is explored in detail through grid STS measurements and complementary density functional theory calculations. We believe these findings will be of significance to future efforts to engineer point defects in PtTe2, which is an interesting and enticing approach to tune the charge-carrier mobility and electron–hole recombination rates, as well as the site reactivity for catalysis.


2016 ◽  
Vol 113 (32) ◽  
pp. 8921-8926 ◽  
Author(s):  
Roland Bliem ◽  
Jessi E. S. van der Hoeven ◽  
Jan Hulva ◽  
Jiri Pavelec ◽  
Oscar Gamba ◽  
...  

Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alex Inayeh ◽  
Ryan R. K. Groome ◽  
Ishwar Singh ◽  
Alex J. Veinot ◽  
Felipe Crasto de Lima ◽  
...  

AbstractAlthough the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC2Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers.


2017 ◽  
Vol 95 (7) ◽  
Author(s):  
Veronika Brázdová ◽  
David R. Bowler ◽  
Kitiphat Sinthiptharakoon ◽  
Philipp Studer ◽  
Adam Rahnejat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document