Atomic layer deposition for rutile structure TiO2 thin films using a SnO2 seed layer and low temperature heat treatment

2021 ◽  
Author(s):  
Byunguk Kim ◽  
Yeonsik Choi ◽  
Dahyun Lee ◽  
Seonghak Cheon ◽  
Younghun Byun ◽  
...  

Abstract We study the rutile-TiO2 film deposition with a high-k value using a SnO2 seed layer and a low temperature heat treatment. Generally, heat treatment over 600 ℃ is required to obtain the rutile-TiO2 film. However, By using a SnO2 seed layer, we obtained rutile-TiO2 films with heat treatments as low as 400 ℃. The XPS analysis confirms that the SnO2 and TiO2 film were deposited. The XRD analysis showed that a heat treatment at 400 ℃ after depositing the SnO2 and TiO2 films was effective in obtaining the rutile-TiO2 film when the SnO2 film was thicker than 10nm. The TEM / EDX analysis show that no diffusion in the thin film between TiO2 and SnO2. The dielectric constant of the TiO2 film deposited on the SnO2 film (20 nm) was 68, which was more than twice as high as anatase TiO2 dielectric constant. The current density was 10-4A/cm2 at 0.7 V and this value confirmed that the leakage current was not affected by the SnO2 seed layer.

Alloy Digest ◽  
1965 ◽  
Vol 14 (1) ◽  

Abstract Jessair is a manganese, chromium, molybdenum alloy steel combining the deep harding characteristics of air-hardening steels with the simplicity of low temperature heat treatment possible in many oil-hardening steels. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-157. Producer or source: Jessop Steel Company.


Vsyo o myase ◽  
2020 ◽  
pp. 22-24
Author(s):  
Nasonova V.V. ◽  
◽  
Tunieva E.K. ◽  
Motovilina A.A. ◽  
Mileenkova E.V. ◽  
...  

The paper presents the results of the study on the effect of low-temperature heat treatment on color characteristics and protein oxidation products depending on the method, temperature and duration of heat treatment of culinary products from turkey meat. At present, the use of low-temperature processing in the production technology for meat products with improved organoleptic indices is a topical direction.


2015 ◽  
Vol 41 (7) ◽  
pp. 705-709 ◽  
Author(s):  
D. A. Balaev ◽  
A. A. Krasikov ◽  
A. A. Dubrovskii ◽  
O. A. Bayukov ◽  
S. V. Stolyar ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1027
Author(s):  
Beata Smyrak ◽  
Bartosz Jurkiewicz ◽  
Małgorzata Zasadzińska ◽  
Marek Gniełczyk ◽  
Patryk Jałowy

The raw material for the production of Al-Mg-Si wires is wire rods, created in the Continuus Properzi line in temper T1 (cooled after forming at an elevated temperature and after natural aging). The general technologies for shaping the mechanical and electrical properties of Al-Mg-Si wire rods include two kinds: high- and low-temperature heat treatments. High-temperature heat treatment includes a homogenization process and a supersaturation process. Low-temperature heat treatment takes place after supersaturation and includes natural or artificial aging. This study shows how the amount of Mg and Si influences the mechanical and electrical properties of EN-AW 6101 wire rods after different kinds of heat treatments. As the general aim of this study was to determine the effect of the material’s temper on its mechanical and electrical properties, the research considered the initial parameters of the starting materials being examined. These parameters can be modified by selecting the chemical composition of the Al-Mg-Si alloy and the value of precipitation hardening obtained with artificial.


Sign in / Sign up

Export Citation Format

Share Document