Medical segmentation with generative adversarial semi-supervised network

Author(s):  
Chuchen Li ◽  
Huafeng Liu

Abstract Recent medical image segmentation methods heavily rely on large-scale training data and high-quality annotations. However, these resources are hard to obtain due to the limitation of medical images and professional annotators. How to utilize limited annotations and maintain the performance is an essential yet challenging problem. In this paper, we try to tackle this problem in a self-learning manner by proposing a Generative Adversarial Semi-supervised Network (GASNet). We use limited annotated images as main supervision signals, and the unlabeled images are manipulated as extra auxiliary information to improve the performance. More specifically, we modulate a segmentation network as a generator to produce pseudo labels for unlabeled images. To make the generator robust, we train an uncertainty discriminator with generative adversarial learning to determine the reliability of the pseudo labels. To further ensure dependability, we apply feature mapping loss to obtain statistic distribution consistency between the generated labels and the real labels. Then the verified pseudo labels are used to optimize the generator in a self-learning manner. We validate the effectiveness of the proposed method on right ventricle dataset, Sunnybrook dataset, STACOM, ISIC dataset, and Kaggle lung dataset. We obtain 0.8402 to 0.9121, 0.8103 to 0.9094, 0.9435 to 0.9724, 0.8635 to 0.886, and 0.9697 to 0.9885 dice coefficient with 1/8 to 1/2 proportion of densely annotated labels, respectively. The improvements are up to 28.6 points higher than the corresponding fully supervised baseline.

Author(s):  
Yang Zhao ◽  
Jianyi Zhang ◽  
Changyou Chen

Scalable Bayesian sampling is playing an important role in modern machine learning, especially in the fast-developed unsupervised-(deep)-learning models. While tremendous progresses have been achieved via scalable Bayesian sampling such as stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD), the generated samples are typically highly correlated. Moreover, their sample-generation processes are often criticized to be inefficient. In this paper, we propose a novel self-adversarial learning framework that automatically learns a conditional generator to mimic the behavior of a Markov kernel (transition kernel). High-quality samples can be efficiently generated by direct forward passes though a learned generator. Most importantly, the learning process adopts a self-learning paradigm, requiring no information on existing Markov kernels, e.g., knowledge of how to draw samples from them. Specifically, our framework learns to use current samples, either from the generator or pre-provided training data, to update the generator such that the generated samples progressively approach a target distribution, thus it is called self-learning. Experiments on both synthetic and real datasets verify advantages of our framework, outperforming related methods in terms of both sampling efficiency and sample quality.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1230
Author(s):  
Xiaofei Qin ◽  
Chengzi Wu ◽  
Hang Chang ◽  
Hao Lu ◽  
Xuedian Zhang

Medical image segmentation is a fundamental task in medical image analysis. Dynamic receptive field is very helpful for accurate medical image segmentation, which needs to be further studied and utilized. In this paper, we propose Match Feature U-Net, a novel, symmetric encoder– decoder architecture with dynamic receptive field for medical image segmentation. We modify the Selective Kernel convolution (a module proposed in Selective Kernel Networks) by inserting a newly proposed Match operation, which makes similar features in different convolution branches have corresponding positions, and then we replace the U-Net’s convolution with the redesigned Selective Kernel convolution. This network is a combination of U-Net and improved Selective Kernel convolution. It inherits the advantages of simple structure and low parameter complexity of U-Net, and enhances the efficiency of dynamic receptive field in Selective Kernel convolution, making it an ideal model for medical image segmentation tasks which often have small training data and large changes in targets size. Compared with state-of-the-art segmentation methods, the number of parameters in Match Feature U-Net (2.65 M) is 34% of U-Net (7.76 M), 29% of UNet++ (9.04 M), and 9.1% of CE-Net (29 M). We evaluated the proposed architecture in four medical image segmentation tasks: nuclei segmentation in microscopy images, breast cancer cell segmentation, gland segmentation in colon histology images, and disc/cup segmentation. Our experimental results show that Match Feature U-Net achieves an average Mean Intersection over Union (MIoU) gain of 1.8, 1.45, and 2.82 points over U-Net, UNet++, and CE-Net, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhuqing Yang

Medical image segmentation (IS) is a research field in image processing. Deep learning methods are used to automatically segment organs, tissues, or tumor regions in medical images, which can assist doctors in diagnosing diseases. Since most IS models based on convolutional neural network (CNN) are two-dimensional models, they are not suitable for three-dimensional medical imaging. On the contrary, the three-dimensional segmentation model has problems such as complex network structure and large amount of calculation. Therefore, this study introduces the self-excited compressed dilated convolution (SECDC) module on the basis of the 3D U-Net network and proposes an improved 3D U-Net network model. In the SECDC module, the calculation amount of the model can be reduced by 1 × 1 × 1 convolution. Combining normal convolution and cavity convolution with an expansion rate of 2 can dig out the multiview features of the image. At the same time, the 3D squeeze-and-excitation (3D-SE) module can realize automatic learning of the importance of each layer. The experimental results on the BraTS2019 dataset show that the Dice coefficient and other indicators obtained by the model used in this paper indicate that the overall tumor can reach 0.87, the tumor core can reach 0.84, and the most difficult to segment enhanced tumor can reach 0.80. From the evaluation indicators, it can be analyzed that the improved 3D U-Net model used can greatly reduce the amount of data while achieving better segmentation results, and the model has better robustness. This model can meet the clinical needs of brain tumor segmentation methods.


2020 ◽  
Author(s):  
Kun Chen ◽  
Manning Wang ◽  
Zhijian Song

Abstract Background: Deep neural networks have been widely used in medical image segmentation and have achieved state-of-the-art performance in many tasks. However, different from the segmentation of natural images or video frames, the manual segmentation of anatomical structures in medical images needs high expertise so the scale of labeled training data is very small, which is a major obstacle for the improvement of deep neural networks performance in medical image segmentation. Methods: In this paper, we proposed a new end-to-end generation-segmentation framework by integrating Generative Adversarial Networks (GAN) and a segmentation network and train them simultaneously. The novelty is that during the training of the GAN, the intermediate synthetic images generated by the generator of the GAN are used to pre-train the segmentation network. As the advances of the training of the GAN, the synthetic images evolve gradually from being very coarse to containing more realistic textures, and these images help train the segmentation network gradually. After the training of GAN, the segmentation network is then fine-tuned by training with the real labeled images. Results: We evaluated the proposed framework on four different datasets, including 2D cardiac dataset and lung dataset, 3D prostate dataset and liver dataset. Compared with original U-net and CE-Net, our framework can achieve better segmentation performance. Our framework also can get better segmentation results than U-net on small datasets. In addition, our framework is more effective than the usual data augmentation methods. Conclusions: The proposed framework can be used as a pre-train method of segmentation network, which helps to get a better segmentation result. Our method can solve the shortcomings of current data augmentation methods to some extent.


2021 ◽  
Vol 12 (1) ◽  
pp. 162
Author(s):  
Carmelo Militello ◽  
Andrea Ranieri ◽  
Leonardo Rundo ◽  
Ildebrando D’Angelo ◽  
Franco Marinozzi ◽  
...  

Unsupervised segmentation techniques, which do not require labeled data for training and can be more easily integrated into the clinical routine, represent a valid solution especially from a clinical feasibility perspective. Indeed, large-scale annotated datasets are not always available, undermining their immediate implementation and use in the clinic. Breast cancer is the most common cause of cancer death in women worldwide. In this study, breast lesion delineation in Dynamic Contrast Enhanced MRI (DCE-MRI) series was addressed by means of four popular unsupervised segmentation approaches: Split-and-Merge combined with Region Growing (SMRG), k-means, Fuzzy C-Means (FCM), and spatial FCM (sFCM). They represent well-established pattern recognition techniques that are still widely used in clinical research. Starting from the basic versions of these segmentation approaches, during our analysis, we identified the shortcomings of each of them, proposing improved versions, as well as developing ad hoc pre- and post-processing steps. The obtained experimental results, in terms of area-based—namely, Dice Index (DI), Jaccard Index (JI), Sensitivity, Specificity, False Positive Ratio (FPR), False Negative Ratio (FNR)—and distance-based metrics—Mean Absolute Distance (MAD), Maximum Distance (MaxD), Hausdorff Distance (HD)—encourage the use of unsupervised machine learning techniques in medical image segmentation. In particular, fuzzy clustering approaches (namely, FCM and sFCM) achieved the best performance. In fact, for area-based metrics, they obtained DI = 78.23% ± 6.50 (sFCM), JI = 65.90% ± 8.14 (sFCM), sensitivity = 77.84% ± 8.72 (FCM), specificity = 87.10% ± 8.24 (sFCM), FPR = 0.14 ± 0.12 (sFCM), and FNR = 0.22 ± 0.09 (sFCM). Concerning distance-based metrics, they obtained MAD = 1.37 ± 0.90 (sFCM), MaxD = 4.04 ± 2.87 (sFCM), and HD = 2.21 ± 0.43 (FCM). These experimental findings suggest that further research would be useful for advanced fuzzy logic techniques specifically tailored to medical image segmentation.


Author(s):  
Maria Papadogiorgaki ◽  
Vasileios Mezaris ◽  
Yiannis Chatzizisis

Images have constituted an essential data source in medicine in the last decades. Medical images derived from diagnostic technologies (e.g., X-ray, ultrasound, computed tomography, magnetic resonance, nuclear imaging) are used to improve the existing diagnostic systems for clinical purposes, but also to facilitate medical research. Hence, medical image processing techniques are constantly investigated and evolved. Medical image segmentation is the primary stage to the visualization and clinical analysis of human tissues. It refers to the segmentation of known anatomic structures from medical images. Structures of interest include organs or parts thereof, such as cardiac ventricles or kidneys, abnormalities such as tumors and cysts, as well as other structures such as bones, vessels, brain structures and so forth. The overall objective of such methods is referred to as computer-aided diagnosis; in other words, they are used for assisting doctors in evaluating medical imagery or in recognizing abnormal findings in a medical image. In contrast to generic segmentation methods, techniques used for medical image segmentation are often applicationspecific; as such, they can make use of prior knowledge for the particular objects of interest and other expected or possible structures in the image. This has led to the development of a wide range of segmentation methods addressing specific problems in medical applications. In the sequel of this article, the analysis of medical visual information generated by three different medical imaging processes will be discussed in detail: Magnetic Resonance Imaging (MRI), Mammography, and Intravascular Ultrasound (IVUS). Clearly, in addition to the aforementioned imaging processes and the techniques for their analysis that are discussed in the sequel, numerous other algorithms for applications of segmentation to specialized medical imagery interpretation exist.


Sign in / Sign up

Export Citation Format

Share Document