Intra- and inter-rater reliability of lower leg waterplethysmography, bioelectrical impedance and muscle twitch force for the use in standing work evaluation

2017 ◽  
Vol 38 (5) ◽  
pp. 701-714 ◽  
Author(s):  
Rudolf Wall ◽  
Oliwia Lips ◽  
Robert Seibt ◽  
Monika A Rieger ◽  
Benjamin Steinhilber
Author(s):  
Maria-Gabriela Garcia ◽  
Rudolf Wall ◽  
Benjamin Steinhilber ◽  
Thomas Läubli ◽  
Bernard J. Martin

Objective: The aim of this study was to evaluate the long-lasting effects of prolonged standing work on a hard floor or floor mat and slow-pace walking on muscle twitch force (MTF) elicited by electrical stimulation. Background: Prolonged standing work may alter lower-leg muscle function, which can be quantified by changes in the MTF amplitude and duration related to muscle fatigue. Ergonomic interventions have been proposed to mitigate fatigue and discomfort; however, their influences remain controversial. Method: Ten men and eight women simulated standing work in 320-min experiments with three conditions: standing on a hard floor or an antifatigue mat and walking on a treadmill, each including three seated rest breaks. MTF in the gastrocnemius-soleus muscles was evaluated through changes in signal amplitude and duration. Results: The significant decrease of MTF amplitude and an increase of duration after standing work on a hard floor and on a mat persisted beyond 1 hr postwork. During walking, significant MTF metrics changes appeared 30 min postwork. MTF amplitude decrease was not significant after the first 110 min in any of the conditions; however, MTF duration was significantly higher than baseline in the standing conditions. Conclusion: Similar long-lasting weakening of MTF was induced by standing on a hard floor and on an antifatigue mat. However, walking partially attenuated this phenomenon. Application: Mostly static standing is likely to contribute to alterations of MTF in lower-leg muscles and potentially to musculoskeletal disorders regardless of the flooring characteristics. Occupational activities including slow-pace walking may reduce such deterioration in muscle function.


2006 ◽  
Vol 95 (2) ◽  
pp. 1124-1133 ◽  
Author(s):  
R. Luke W. Harris ◽  
Jacques Bobet ◽  
Leo Sanelli ◽  
David J. Bennett

Paralyzed skeletal muscle sometimes becomes faster and more fatigable after spinal cord injury (SCI) because of reduced activity. However, in some cases, pronounced muscle activity in the form of spasticity (hyperreflexia and hypertonus) occurs after long-term SCI. We hypothesized that this spastic activity may be associated with a reversal back to a slower, less fatigable muscle. In adult rats, a sacral (S2) spinal cord transection was performed, affecting only tail musculature and resulting in chronic tail spasticity beginning 2 wk later and lasting indefinitely. At 8 mo after injury, we examined the contractile properties of the segmental tail muscle in anesthetized spastic rats and in age-matched normal rats. The segmental tail muscle has only a few motor units (<12), which were easily detected with graded nerve stimulation, revealing two clear motor unit twitch durations. The dominant faster unit twitches peaked at 15 ms and ended within 50 ms, whereas the slower unit twitches only peaked at 30–50 ms. With chronic injury, this slow twitch component increased, resulting in a large overall increase (>150%) in the fraction of the peak muscle twitch force remaining at 50 ms. With injury, the peak muscle twitch (evoked with supramaximal stimulation) also increased in its time to peak (+48.9%) and half-rise time (+150.0%), and decreased in its maximum rise (−35.0%) and decay rates (−40.1%). Likewise, after a tetanic stimulation, the tetanus half-fall time increased by 53.8%. Therefore the slow portion of the muscle was enhanced in spastic muscles. Consistent with slowing, posttetanic potentiation was 9.2% lower and the stimulation frequency required to produce half-maximal tetanus decreased 39.0% in chronic spinals. Interestingly, in spastic muscles compared with normal, whole muscle twitch force was 81.1% higher, whereas tetanic force production was 38.1% lower. Hence the twitch-to-tetanus ratio increased 104.0%. Inconsistent with overall slowing, whole spastic muscles were 61.5% more fatigable than normal muscles. Thus contrary to the classical slow-to-fast conversion that is seen after SCI without spasticity, SCI with spasticity is associated with a mixed effect, including a preservation/enhancement of slow properties, but a loss of fatigue resistance.


Author(s):  
Maria-Gabriela Garcia ◽  
Maria Gloria Roman ◽  
Andrea Davila ◽  
Bernard J. Martin

Objective The goal of this study was to evaluate and compare lower-leg muscle fatigue, edema, and discomfort induced by the prolonged standing of security guards wearing regular socks and those wearing 15–20 or 20–30 mmHg compression stockings as intervention. Background Compression stockings are somewhat used by individuals standing all day at work. However, quantitative evidence showing their potential benefits for lower-leg health issues in healthy individuals during real working conditions is lacking. Method Forty male security employees participated in the study. All were randomly assigned to the control or one of the two intervention groups (I15–20 or I20–30). Lower-leg muscle twitch force, volume, and discomfort ratings were measured before and after their regular 12-hr standing work shift. Results Significant evidence of lower-leg long-lasting muscle fatigue, edema, and discomfort was observed after standing work for guards wearing regular socks. However, no significant changes were found for guards wearing either compression stockings. Conclusion In healthy individuals, compression stockings seem to attenuate efficiently the tested outcomes in the lower leg resulting from prolonged standing. Application Occupational activities requiring prolonged standing may benefit from 15–20 or 20–30 mmHg compression stockings. As similar benefits were observed for both levels of compression, the lower level may be sufficient.


2015 ◽  
Vol 47 ◽  
pp. 94-95
Author(s):  
Tiffany D. deVries ◽  
A. Wayne Johnson ◽  
J. William Myrer ◽  
Sarah Ridge

Author(s):  
Maria-Gabriela Garcia ◽  
Thomas Läubli ◽  
Bernard J. Martin

Objective: The aim of this study was to evaluate the long-lasting motor, behavioral, physiological, and perceptual effects of prolonged standing work in three work–rest cycle conditions including passive or active rest breaks. Background: Muscle fatigue has been evidenced after prolonged standing work through physiological and neuromotor measures. It has been postulated that muscle fatigue induced by prolonged work could be attenuated by appropriate scheduling of work and rest periods. However, investigations in this domain remain limited. Method: Thirty participants simulated standing work for 5 hr with work–rest cycles of short, medium, or long standing periods including passive or active breaks. Lower-leg muscle twitch force (MTF), muscle oxygenation, lower-leg volume, postural stability, force control, and discomfort perception were quantified on 2 days. Results: Prolonged standing induced significant changes in all measures immediately after 5 hr of work, indicating a detrimental effect in long-lasting muscle fatigue, performance, discomfort, and vascular aspects. Differences in the measures were not significant between work cycles and/or break type. Conclusion: Similar physiological and motor alterations were induced by prolonged standing. The absence of difference in the effects induced by the tested work–rest cycles suggests that simply altering the work–rest cycle may not be sufficient to counteract the effects of mainly static standing work. Finally, standing for 3 hr or more shows clear detrimental effects. Application: Prolonged standing is likely to contribute to musculoskeletal and vascular symptoms. A limitation to less than 3 hr of mostly static standing in occupational activities could avoid alterations leading to these symptoms.


2002 ◽  
Vol 283 (1) ◽  
pp. C169-C177 ◽  
Author(s):  
Craig Yensen ◽  
Wadih Matar ◽  
Jean-Marc Renaud

The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37°C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7–13 mM K+ than at 4.7 mM (control). For soleus muscle, twitch force potentiation was observed between 7 and 11 mM K+. Time to peak and half-relaxation time were not affected by the increase in extracellular K+ concentration in EDL muscle, whereas both parameters became significantly longer in soleus muscle. Decrease in overshoot and prolongation of the action potential duration observed at 9 and 11 mM K+ were mimicked when muscles were respectively exposed to 25 and 50 nM tetrodotoxin (TTX; used to partially block Na+ channels). Despite similar action potentials, twitch force was not potentiated by TTX. It is therefore suggested that the K+-induced potentiation of the twitch in EDL muscle is not due to a prolongation of the action potential and contraction time, whereas a longer contraction, especially the relaxation phase, may contribute to the potentiation in soleus muscle.


2001 ◽  
Vol 91 (1) ◽  
pp. 386-394 ◽  
Author(s):  
Masae Miyatani ◽  
Hiroaki Kanehisa ◽  
Yoshihisa Masuo ◽  
Masamitsu Ito ◽  
Tetsuo Fukunaga

The present study aimed to investigate the validity of estimating muscle volume by bioelectrical impedance analysis. Bioelectrical impedance and series cross-sectional images of the forearm, upper arm, lower leg, and thigh on the right side were determined in 22 healthy young adult men using a specially designed bioelectrical impedance acquisition system and magnetic resonance imaging (MRI) method, respectively. The impedance index ( L 2/Z) for every segment, calculated as the ratio of segment length squared to the impedance, was significantly correlated to the muscle volume measured by MRI, with r= 0.902–0.976 ( P < 0.05). In these relationships, the SE of estimation was 38.4 cm3 for the forearm, 40.9 cm3 for the upper arm, 107.2 cm3 for the lower leg, and 362.3 cm3 for the thigh. Moreover, isometric torque developed in elbow flexion or extension and knee flexion or extension was significantly correlated to the L 2/Z values of the upper arm and thigh, respectively, with correlation coefficients of 0.770–0.937 ( P < 0.05), which differed insignificantly from those (0.799–0.958; P < 0.05) in the corresponding relationships with the muscle volume measured by MRI of elbow flexors or extensors and knee flexors or extensors. Thus the present study indicates that bioelectrical impedance analysis may be useful to predict the muscle volume and to investigate possible relations between muscle size and strength capability in a limited segment of the upper and lower limbs.


Sign in / Sign up

Export Citation Format

Share Document