A novel technique for in-situ simultaneous measurement of thickness of deposited film and electron density with two curling probes

2020 ◽  
Vol 29 (7) ◽  
pp. 075009
Author(s):  
Daisuke Ogawa ◽  
Keiji Nakamura ◽  
Hideo Sugai
1980 ◽  
Vol 45 (8) ◽  
pp. 2219-2223 ◽  
Author(s):  
Marie Jakoubková ◽  
Martin Čapka

Kinetics of homogenous hydrogenation of 1-heptene catalysed by rhodium(I) complexes prepared in situ from μ,μ'-dichloro-bis(cyclooctenerhodium) and phosphines of the type RP(C6H5)2 (R = -CH3, -(CH2)nSi(CH3)3; n = 1-4) have been studied. The substitution of the ligands by the trimethylsilyl group was found to increase significantly the catalytic activity of the complexes. The results are discussed in relation to the electron density on the phosphorus atom determined by 31P NMR spectroscopy and to its proton acceptor ability determined by IR spectroscopy.


2021 ◽  
Author(s):  
Fuqing Huang ◽  
Jiuhou Lei ◽  
Chao Xiong

<p>Equatorial plasma bubbles (EPBs) are typically ionospheric irregularities that frequently occur at the low latitudes and equatorial regions, which can significantly affect the propagation of radio waves. In this study, we reported a unique strong EPB that happened at middle latitudes over the Asian sector during the quiescent period. The multiple observations including total electron content (TEC) from Beidou geostationary satellites and GPS, ionosondes, in-situ electron density from SWARM and meteor radar are used to explore the characteristic and mechanism of the observed EPB. The unique strong EPB was associated with great nighttime TEC/electron density enhancement at the middle latitudes, which moves toward eastward. The potential physical processes of the observed EPB are also discussed.</p>


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1221
Author(s):  
Jun-Hyoung Park ◽  
Ji-Ho Cho ◽  
Jung-Sik Yoon ◽  
Jung-Ho Song

We present a non-invasive approach for monitoring plasma parameters such as the electron temperature and density inside a radio-frequency (RF) plasma nitridation device using optical emission spectroscopy (OES) in conjunction with multivariate data analysis. Instead of relying on a theoretical model of the plasma emission to extract plasma parameters from the OES, an empirical correlation was established on the basis of simultaneous OES and other diagnostics. Additionally, we developed a machine learning (ML)-based virtual metrology model for real-time Te and ne monitoring in plasma nitridation processes using an in situ OES sensor. The results showed that the prediction accuracy of electron density was 97% and that of electron temperature was 90%. This method is especially useful in plasma processing because it provides in-situ and real-time analysis without disturbing the plasma or interfering with the process.


2012 ◽  
Vol 74 ◽  
pp. 81-86 ◽  
Author(s):  
G. Manju ◽  
R. Sridharan ◽  
P. Sreelatha ◽  
Sudha Ravindran ◽  
M.K. Madhav Haridas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document