scholarly journals Resonant wave energy harvester based on dielectric elastomer generator

2018 ◽  
Vol 27 (3) ◽  
pp. 035015 ◽  
Author(s):  
Giacomo Moretti ◽  
Gastone Pietro Rosati Papini ◽  
Michele Righi ◽  
David Forehand ◽  
David Ingram ◽  
...  
2022 ◽  
Vol 253 ◽  
pp. 115178
Author(s):  
Xiaozhen Du ◽  
Lixiang Du ◽  
Xing Cai ◽  
Zhenfu Hao ◽  
Xiangdong Xie ◽  
...  

Author(s):  
Michele Righi ◽  
Giacomo Moretti ◽  
David Forehand ◽  
Lorenzo Agostini ◽  
Rocco Vertechy ◽  
...  

AbstractDielectric elastomer generators (DEGs) are a promising option for the implementation of affordable and reliable sea wave energy converters (WECs), as they show considerable promise in replacing expensive and inefficient power take-off systems with cheap direct-drive generators. This paper introduces a concept of a pressure differential wave energy converter, equipped with a DEG power take-off operating in direct contact with sea water. The device consists of a closed submerged air chamber, with a fluid-directing duct and a deformable DEG power take-off mounted on its top surface. The DEG is cyclically deformed by wave-induced pressure, thus acting both as the power take-off and as a deformable interface with the waves. This layout allows the partial balancing of the stiffness due to the DEG’s elasticity with the negative hydrostatic stiffness contribution associated with the displacement of the water column on top of the DEG. This feature makes it possible to design devices in which the DEG exhibits large deformations over a wide range of excitation frequencies, potentially achieving large power capture in a wide range of sea states. We propose a modelling approach for the system that relies on potential-flow theory and electroelasticity theory. This model makes it possible to predict the system dynamic response in different operational conditions and it is computationally efficient to perform iterative and repeated simulations, which are required at the design stage of a new WEC. We performed tests on a small-scale prototype in a wave tank with the aim of investigating the fluid–structure interaction between the DEG membrane and the waves in dynamical conditions and validating the numerical model. The experimental results proved that the device exhibits large deformations of the DEG power take-off over a broad range of monochromatic and panchromatic sea states. The proposed model demonstrates good agreement with the experimental data, hence proving its suitability and effectiveness as a design and prediction tool.


Meccanica ◽  
2021 ◽  
Vol 56 (5) ◽  
pp. 1223-1237
Author(s):  
Giacomo Moretti ◽  
Andrea Scialò ◽  
Giovanni Malara ◽  
Giovanni Gerardo Muscolo ◽  
Felice Arena ◽  
...  

AbstractDielectric elastomer generators (DEGs) are soft electrostatic generators based on low-cost electroactive polymer materials. These devices have attracted the attention of the marine energy community as a promising solution to implement economically viable wave energy converters (WECs). This paper introduces a hardware-in-the-loop (HIL) simulation framework for a class of WECs that combines the concept of the oscillating water columns (OWCs) with the DEGs. The proposed HIL system replicates in a laboratory environment the realistic operating conditions of an OWC/DEG plant, while drastically reducing the experimental burden compared to wave tank or sea tests. The HIL simulator is driven by a closed-loop real-time hydrodynamic model that is based on a novel coupling criterion which allows rendering a realistic dynamic response for a diversity of scenarios, including large scale DEG plants, whose dimensions and topologies are largely different from those available in the HIL setup. A case study is also introduced, which simulates the application of DEGs on an OWC plant installed in a mild real sea laboratory test-site. Comparisons with available real sea-test data demonstrated the ability of the HIL setup to effectively replicate a realistic operating scenario. The insights gathered on the promising performance of the analysed OWC/DEG systems pave the way to pursue further sea trials in the future.


2021 ◽  
Author(s):  
Changqing Jiang ◽  
SEIKI CHIBA ◽  
Mikio Waki ◽  
Koji Fujita ◽  
Bettar El Moctar

2019 ◽  
Vol 83 (sp1) ◽  
pp. 976
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Hailong Chen ◽  
Yuanchao Chai ◽  
Liquan Wang

2019 ◽  
Vol 7 (6) ◽  
pp. 3174-3185 ◽  
Author(s):  
Jinfeng Zhang ◽  
Xiangdong Xie ◽  
Gangbing Song ◽  
Guofeng Du ◽  
Dezheng Liu

Sign in / Sign up

Export Citation Format

Share Document