Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy

2018 ◽  
Vol 27 (5) ◽  
pp. 055005 ◽  
Author(s):  
Han Yuan ◽  
Frédéric Chapelle ◽  
Jean-Christophe Fauroux ◽  
Xavier Balandraud
Author(s):  
Edilberto Alves de Abrantes Júnior ◽  
Augusto Figueiredo ◽  
Carlos Jose de Araujo ◽  
Raimundo Duarte

2020 ◽  
Vol 31 (16) ◽  
pp. 1920-1934 ◽  
Author(s):  
Chen Liang ◽  
Yongquan Wang ◽  
Tao Yao ◽  
Botao Zhu

This article presents a soft crawling robot prototype with a simple architecture inspired by inchworms. The robot functionally integrates the torso (body) and feet in a monolithic curved structure that only needs a single shape memory alloy coil and differential friction to actuate it. A novel foot configuration is proposed, which makes the two feet, with an anti-symmetrical friction layout, can be alternately anchored, to match the contraction–recovery sequence of the body adaptively. Based on the antagonistic configuration between the shape memory alloy actuator and the elastic body, a vertically auxiliary spring was adopted to enhance the interaction mechanism. Force and kinematic analysis was undertaken, focusing on the parametric design of the special foot configuration. A miniature robot prototype was then 3D-printed (54 mm in length and 9.77 g in weight), using tailored thermoplastic polyurethane elastomer as the body material. A series of experimental tests and evaluations were carried out to assess its performance under different conditions. The results demonstrated that under appropriate actuation conditions, the compact robot prototype could accomplish a relative speed of 0.024 BL/s (with a stride length equivalent to 27% of its body length) and bear a load over five times to its own weight.


2020 ◽  
Vol 7 ◽  
Author(s):  
Filomena Simone ◽  
Gianluca Rizzello ◽  
Stefan Seelecke ◽  
Paul Motzki

This work presents a novel five-fingered soft hand prototype actuated by Shape Memory Alloy (SMA) wires. The use of thin (100 μm diameter) SMA wire actuators, in conjunction with an entirely 3D printed hand skeleton, guarantees an overall lightweight and flexible structure capable of silent motion. To enable high forces with sufficiently high actuation speed at each fingertip, bundles of welded actuated SMA wires are used. In order to increase the compliance of each finger, flexible joints from superelastic SMA wires are inserted between each phalanx. The resulting system is a versatile hand prototype having intrinsically elastic fingers, which is capable to grasp several types of objects with a considerable force. The paper starts with the description of the finger hand design, along with practical considerations for the optimal placement of the superelastic SMA in the soft joint. The maximum achievable displacement of each finger phalanx is measured together with the phalanxes dynamic responsiveness at different power stimuli. Several force measurement are also realized at each finger phalanx. The versatility of the prototype is finally demonstrated by presenting several possible hand configurations while handling objects with different sizes and shapes.


2017 ◽  
Vol 4 (11) ◽  
pp. 1700143 ◽  
Author(s):  
Faezeh Arab Hassani ◽  
Wendy Yen Xian Peh ◽  
Gil Gerald Lasam Gammad ◽  
Roshini Priya Mogan ◽  
Tze Kiat Ng ◽  
...  

2012 ◽  
Vol 2012.61 (0) ◽  
pp. _423-1_-_423-2_
Author(s):  
Kohei TAKEDA ◽  
Yasuhiko NISHIMURA ◽  
Kento MITSUI ◽  
Hisaaki TOBUSHI

2019 ◽  
Vol 290 ◽  
pp. 177-189 ◽  
Author(s):  
Saeed Akbari ◽  
Amir Hosein Sakhaei ◽  
Sahil Panjwani ◽  
Kavin Kowsari ◽  
Ahmad Serjouei ◽  
...  

Author(s):  
F. T. Calkins ◽  
J. H. Mabe

The Boeing Company has a goal of creating aircraft that are capable of continuous optimization for all flight conditions. Recent advances in SMA actuation and a detailed understanding of wing design were combined to design, build, and safely demonstrate small trailing edge flaps driven by SMA actuation. As part of a 2012 full-scale flight test program a lightweight and compact Shape Memory Alloy (SMA) rotary actuator was integrated into the hinge line of a small flap on the trailing edge of a commercial aircraft wing. This Adaptive Trailing Edge program was part of a Boeing and Federal Aviation Administration (FAA) collaboration. Aerodynamic studies of these small trailing edge flaps show that improved performance requires multiple flap configurations that vary with flight regime. Configurations include small angles of deployment for reduced fuel burn and emissions during high speed cruise and larger angles of deployment for increased lift and lower noise during takeoff and approach. SMA actuation is an ideal compact solution to position these small flaps and increase aircraft performance by simply and efficiently altering the wings aerodynamic characteristics for each flight segment. Closed loop control of the flap’s position, using the SMA actuator, was demonstrated at multiple flight conditions during flight tests. Results of the successful flight test on a 737–800 commercial airplane and the significantly improved performance benefits will be presented. This is the first flight test of an SMA rotary actuator system, which was matured from TRL 4 to TRL 7 during the program.


Sign in / Sign up

Export Citation Format

Share Document