Corrigendum: Precise real-time hysteretic force tracking of magnetorheological damper (2020 Smart Mater. Struct. 29 104002)

2020 ◽  
Vol 29 (11) ◽  
pp. 119502
Author(s):  
Xian-Xu ‘Frank’ Bai ◽  
Cheng-Xi Li
2021 ◽  
Vol 336 ◽  
pp. 03005
Author(s):  
Xinchao Sun ◽  
Lianyu Zhao ◽  
Zhenzhong Liu

As a simple and effective force tracking control method, impedance control is widely used in robot contact operations. The internal control parameters of traditional impedance control are constant and cannot be corrected in real time, which will lead to instability of control system or large force tracking error. Therefore, it is difficult to be applied to the occasions requiring higher force accuracy, such as robotic medical surgery, robotic space operation and so on. To solve this problem, this paper proposes a model reference adaptive variable impedance control method, which can realize force tracking control by adjusting internal impedance control parameters in real time and generating a reference trajectory at the same time. The simulation experiment proves that compared with the traditional impedance control method, this method has faster force tracking speed and smaller force tracking error. It is a better force tracking control method.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


2008 ◽  
Vol 56 ◽  
pp. 212-217 ◽  
Author(s):  
Hideo Fujitani ◽  
Hiroaki Sakae ◽  
Mai Ito ◽  
Takeshi Hiwatashi

Magnetorheological damper (MR damper) has been expected to control the response of civil and building structures in recent years, because of its large force capacity and variable force characteristics. In this paper, a series of real-time hybrid test was conducted and the results of real time hybrid tests were compared to those of shaking table tests. To determine the control force of the MR damper, skyhook control and sliding mode control theory were employed. As the results, the validity of real-time hybrid test was verified. This paper describes the capability of MR damper to control the structural response.


2014 ◽  
Vol 663 ◽  
pp. 158-162
Author(s):  
Alif Zulfakar bin Pokaad ◽  
Md Radzai bin Said ◽  
Fauzi bin Ahmad ◽  
Mohd Nazeri Kamaruddin

This paper focuses on the design of the control structure which consists of inner loop controller employed for MR damper under impact loading by using computer simulation. The simulation is done by using MATLAB 7.0. The structure of the inner loop control for the proposed MR damper model uses a simple PI control to achieve the desired force. In this simulation, the MR damper model that has been validated with the experimental result is used to simulate the actual force that produced by MR damper. The performance of inner loop controller to track the actual force produced by MR damper by obtaining the several input functions which are half wave of sinusoidal, saw-tooth, square and random functions of desired force with the variation in pendulum mass of 15 kg and 20 kg are investigated. It can be seen clearly that under several input functions, the proposed polynomial model with PI controller has the good ability to track the desired damping force under impact loading.


2021 ◽  
pp. 107754632110026
Author(s):  
Gang Liu ◽  
Wei Jiang ◽  
Qi Wang ◽  
Tao Wang

A conventional variable universe fuzzy proportional–integral–derivative control approach is widely used for semi-active control in mechanical engineering. The performance of the controller is dependent on an optimal selection of parameters of the contracting–expanding factors. An improved variable universe fuzzy proportional–integral–derivative control algorithm is developed in this study where these parameters are automatically determined in real-time according to the error in the controlled responses and its change rate based on fuzzy logic control. The proposed method is numerically and experimentally illustrated with a three-story frame structure with a magnetorheological damper. The amplitude of displacement, velocity, and acceleration at all floor levels under the proposed control method are smaller than those obtained from existing proportional–integral–derivative, fuzzy, and conventional variable universe fuzzy methods.


Structures ◽  
2021 ◽  
Vol 32 ◽  
pp. 1971-1985
Author(s):  
Zhao-Dong Xu ◽  
Yan-Wei Xu ◽  
Cheng Wang ◽  
Yu-Liang Zhao ◽  
Bo-Hai Ji ◽  
...  

2017 ◽  
Vol 36 (4) ◽  
pp. 339-353 ◽  
Author(s):  
Paweł Martynowicz

This work covers selected control issues, including refined force tracking algorithm formulation, concerning the wind turbine tower-nacelle laboratory model equipped with a magnetorheological damper based tuned vibration absorber. The objective of the current research is a development and experimental implementation of the control algorithm that couples basic adaptive stiffness solution with stock magnetorheological damper force tracking concept to obtain a quality tower vibration reduction system. The experiments were conducted assuming monoharmonic, horizontal excitation applied to the assembly modelling the nacelle. The frequency range comprised the neighbourhood of the first bending mode of the tower-nacelle system. The results proved the effectiveness of the adopted algorithm referring to other high-performance solutions.


Sign in / Sign up

Export Citation Format

Share Document