Analysis of entropy generation in peristaltic nanofluid flow with Ohmic heating and Hall current

2019 ◽  
Vol 94 (2) ◽  
pp. 025001 ◽  
Author(s):  
F M Abbasi ◽  
I Shanakhat ◽  
S A Shehzad
Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 529 ◽  
Author(s):  
Saima Noreen ◽  
Asif Abbas ◽  
Abid Hussanan

The core objective of the present study is to examine entropy generation minimization via Hall current and Ohmic heating. Carreau fluid considerations interpret the unavailability of systems’ thermal energy (for mechanical work). The magneto hydrodynamic flow is in the channel, which is not symmetric. We have solved analytically the resulting nonlinear mathematical model. Moreover, physical exploration of important parameters on total entropy generation, temperature, and Bejan number is plotted and discussed. We observed that the generation of entropy takes place throughout the confined flow field y = W1 and y = W2 because of the viscous dissipation effect. In addition, reducing the operating temperature minimizes the entropy.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 354 ◽  
Author(s):  
Iskander Tlili ◽  
Muhammad Ramzan ◽  
Seifedine Kadry ◽  
Hyun-Woo Kim ◽  
Yunyoung Nam

This paper investigated the behavior of the two-dimensional magnetohydrodynamics (MHD) nanofluid flow of water-based suspended carbon nanotubes (CNTs) with entropy generation and nonlinear thermal radiation in a Darcy–Forchheimer porous medium over a moving horizontal thin needle. The study also incorporated the effects of Hall current, magnetohydrodynamics, and viscous dissipation on dust particles. The said flow model was described using high order partial differential equations. An appropriate set of transformations was used to reduce the order of these equations. The reduced system was then solved by using a MATLAB tool bvp4c. The results obtained were compared with the existing literature, and excellent harmony was achieved in this regard. The results were presented using graphs and tables with coherent discussion. It was comprehended that Hall current parameter intensified the velocity profiles for both CNTs. Furthermore, it was perceived that the Bejan number boosted for higher values of Darcy–Forchheimer number.


2021 ◽  
Vol 28 ◽  
pp. 101370 ◽  
Author(s):  
Usman ◽  
Abuzar Ghaffari ◽  
Irfan Mustafa ◽  
Taseer Muhammad ◽  
Yasir Altaf

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mahbuba Tasmin ◽  
Preetom Nag ◽  
Zarin T. Hoque ◽  
Md. Mamun Molla

AbstractA numerical study on heat transfer and entropy generation in natural convection of non-Newtonian nanofluid flow has been explored within a differentially heated two-dimensional wavy porous cavity. In the present study, copper (Cu)–water nanofluid is considered for the investigation where the specific behavior of Cu nanoparticles in water is considered to behave as non-Newtonian based on previously established experimental results. The power-law model and the Brinkman-extended Darcy model has been used to characterize the non-Newtonian porous medium. The governing equations of the flow are solved using the finite volume method with the collocated grid arrangement. Numerical results are presented through streamlines, isotherms, local Nusselt number and entropy generation rate to study the effects of a range of Darcy number (Da), volume fractions (ϕ) of nanofluids, Rayleigh numbers (Ra), and the power-law index (n). Results show that the rate of heat transfer from the wavy wall to the medium becomes enhanced by decreasing the power-law index but increasing the volume fraction of nanoparticles. Increase of porosity level and buoyancy forces of the medium augments flow strength and results in a thinner boundary layer within the cavity. At negligible porosity level of the enclosure, effect of volume fraction of nanoparticles over thermal conductivity of the nanofluids is imperceptible. Interestingly, when the Darcy–Rayleigh number $$Ra^*\gg 10$$ R a ∗ ≫ 10 , the power-law effect becomes more significant than the volume fraction effect in the augmentation of the convective heat transfer process. The local entropy generation is highly dominated by heat transfer irreversibility within the porous enclosure for all conditions of the flow medium. The particular wavy shape of the cavity strongly influences the heat transfer flow pattern and local entropy generation. Interestingly, contour graphs of local entropy generation and local Bejan number show a rotationally symmetric pattern of order two about the center of the wavy cavity.


Sign in / Sign up

Export Citation Format

Share Document