current parameter
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jiahao Chen ◽  
Jie Mei ◽  
Xin Yuan ◽  
Yuefei Zuo ◽  
Jingwei Zhu ◽  
...  

<div>This paper designs parameter adaptation algorithms for online simultaneous identification of a two-parameter sigmoid inverter model for compensating inverter nonlinearity to reduce the voltage error in flux estimation for a position sensorless motor drive. The inverter model has two parameters, a2 and a3, where a2 is “plateau voltage”, and a3 is a shape parameter that mainly accounts for the stray capacitor effect. Parameter a3 is identified by the (6k ± 1)-th order harmonics in measured current. Parameter a2 is identified by the amplitude mismatch of the estimated active flux. It is found that the classic linear flux estimator, i.e., the hybrid of voltage model and current model, cannot be used for a2 identification. This paper proposes to use a saturation function based nonlinear flux estimator to build an effective indicator for a2 error. The coupled identifiability of the two parameters is revealed and analyzed, which was not seen in literature. The concept of the low current region where the two-way coupling between a2 and a3 occurs is established. In theory, it is suggested to stop the inverter identification in the low current region. However, the experimental results in which dc bus voltage variation and load change are imposed, have shown the effectiveness of the proposed online inverter identification and compensation method, even in low current region.</div>


2021 ◽  
Author(s):  
Jiahao Chen ◽  
Jie Mei ◽  
Xin Yuan ◽  
Yuefei Zuo ◽  
Jingwei Zhu ◽  
...  

<div>This paper designs parameter adaptation algorithms for online simultaneous identification of a two-parameter sigmoid inverter model for compensating inverter nonlinearity to reduce the voltage error in flux estimation for a position sensorless motor drive. The inverter model has two parameters, a2 and a3, where a2 is “plateau voltage”, and a3 is a shape parameter that mainly accounts for the stray capacitor effect. Parameter a3 is identified by the (6k ± 1)-th order harmonics in measured current. Parameter a2 is identified by the amplitude mismatch of the estimated active flux. It is found that the classic linear flux estimator, i.e., the hybrid of voltage model and current model, cannot be used for a2 identification. This paper proposes to use a saturation function based nonlinear flux estimator to build an effective indicator for a2 error. The coupled identifiability of the two parameters is revealed and analyzed, which was not seen in literature. The concept of the low current region where the two-way coupling between a2 and a3 occurs is established. In theory, it is suggested to stop the inverter identification in the low current region. However, the experimental results in which dc bus voltage variation and load change are imposed, have shown the effectiveness of the proposed online inverter identification and compensation method, even in low current region.</div>


2021 ◽  
Author(s):  
Jiahao Chen ◽  
Jie Mei ◽  
Xin Yuan ◽  
Yuefei Zuo ◽  
Jingwei Zhu ◽  
...  

<div>This paper designs parameter adaptation algorithms for online simultaneous identification of a two-parameter sigmoid inverter model for compensating inverter nonlinearity to reduce the voltage error in flux estimation for a position sensorless motor drive. The inverter model has two parameters, a2 and a3, where a2 is “plateau voltage”, and a3 is a shape parameter that mainly accounts for the stray capacitor effect. Parameter a3 is identified by the (6k ± 1)-th order harmonics in measured current. Parameter a2 is identified by the amplitude mismatch of the estimated active flux. It is found that the classic linear flux estimator, i.e., the hybrid of voltage model and current model, cannot be used for a2 identification. This paper proposes to use a saturation function based nonlinear flux estimator to build an effective indicator for a2 error. The coupled identifiability of the two parameters is revealed and analyzed, which was not seen in literature. The concept of the low current region where the two-way coupling between a2 and a3 occurs is established. In theory, it is suggested to stop the inverter identification in the low current region. However, the experimental results in which dc bus voltage variation and load change are imposed, have shown the effectiveness of the proposed online inverter identification and compensation method, even in low current region.</div>


2021 ◽  
Author(s):  
Bhavin S Khatri

The structural maintenance of chromosome complexes exhibit the remarkable ability to actively extrude DNA, which has led to the appealing and popular "loop extrusion" model to explain one of the most important processes in biology: the compaction of chromatin during the cell cycle. A potential mechanism for the action of extrusion is the classic Brownian ratchet, which requires short DNA loops to overcome an initial enthalpic barrier to bending, before favoured entropic growth of longer loops. We present a simple model of the constrained dynamics of DNA loop formation based on a frictional worm like chain, where for circular loops of order, or smaller than the persistence length, internal friction to bending dominates solvent dynamics. Using Rayleigh's dissipation function, we show how bending friction can be translated to simple one dimensional diffusion of the angle of the loop resulting in a Smoluchowski equation with a coordinate dependent diffusion constant. This interplay between Brownian motion, bending dissipation and geometry of loops leads to a qualitatively new phenomenon, where the friction vanishes for bends with an angle of exactly 180°, due to a decoupling between changes in loop curvature and angle. Using this theory and given current parameter uncertainties, we tentatively predict mean first passage times of between 1 and 10 seconds, which is of order the cycle time of ATP, suggesting spontaneous looping could be sufficient to achieve efficient initiation of looping.


2021 ◽  
Vol 3 (1) ◽  
pp. 54-66
Author(s):  
Elda Sari ◽  
Nora Idiawati ◽  
Sukal Minsas

The research of composition and community structure of copepods in Kakap river estuary, Kubu Raya District, West Borneo was conducted from October to December 2020. The purpose of this study is to determine the composition and the community structure of copepod in Kakap river estuary, Kubu Raya District, West Borneo. This study used a purposive sampling method at four stations. Copepod samples were taken using plankton net. During the research, the total number of copepods that have been identified from 4 stations are 11 species from 3 orders, 4 families and 8 genera. Copepoda that has been obtained has the composition, namly Cyclopoids 5 species, Harpacticoida 3 species, Calanoida 2 species. The copepod density in Kakap river estuary ranged from 7,9-103,3 Ind / l, the diversity index (H ') ranged from 0 to 1.9, the evenness index (E) ranged from 0 - 0,9 and the dominance index (C) ranged from 0,2 - 1. The result of copepod density correlation analysis is that negatively correlated with -1,000 current parameter and positively correlated with the DO parameter, which is 0,800. The research of composition and community structure of copepods in Kakap river estuary, Kubu Raya District, West Borneo was conducted from October to December 2020. The purpose of this study is to determine the composition and the community structure of copepod in Kakap river estuary, Kubu Raya District, West Borneo. This study used a purposive sampling method at four stations. Copepod samples were taken using plankton net. During the research, the total number of copepods that have been identified from 4 stations are 11 species from 3 orders, 4 families and 8 genera. Copepoda that has been obtained has the composition, namly Cyclopoids 5 species, Harpacticoida 3 species, Calanoida 2 species. The copepod density in Kakap river estuary ranged from 7,9-103,3 Ind / l, the diversity index (H ') ranged from 0 to 1.9, the evenness index (E) ranged from 0 - 0,9 and the dominance index (C) ranged from 0,2 - 1. The result of copepod density correlation analysis is that negatively correlated with -1,000 current parameter and positively correlated with the DO parameter, which is 0,800.


2021 ◽  
Author(s):  
Mariusz Milewski

One of the most important parameters in a lightning flash that is of interest to researchers is the lightning return-stroke current as it causes most of the destructions and disturbances in electrical and telecommunication networks. In most cases, the lightning return-stroke current can not be directly measured and current characteristics are determined from measured electric and magnetic fields through the use of lightning return-stroke models. The main objective of this work is the development of a lightning return-stroke model for an elevated object. Also, an important objective is the correlation of the wavefront parameters (peak, maximum rate of rise and risetime) of the return-stroke current with the wavefront parameters of its associated lightning electromagnetic pulse (LEMP), measured 2 km north of the tower. The developed field-current parameter relationships for CN Tower lightning return strokes are compared with those obtained from measurements conducted at the Peissenberg Tower in Germany. A 3-section transmission line (TL) model of the CN Tower, along with the derivative of the modified Heidler function, is used to simulate the measured current derivative signal. Then, the spatial-temporal distribution of the lightning current along the CN Tower and the lightning channel, during the lightning return-stroke phase, is determined. The presented model simulates the measured current derivative signal instead of the current as has been used by other researchers. The use of the derivative of the modified Heidler function to simulate the lightning current derivative proved to be superior than simulating the lightning current. For the quantitative assessment of the proposed model, a comparison between the simulated field, obtained through the usage of Maxwell’s equations and the simulated current, and the measured field is performed. The developed 3-section TL model based on the measured current derivative and the derivative of the modified Heidler function produced a simulated magnetic field that is much closer to the measured field in comparison with previous models. The developed field-current parameter relationships as well as the experimentally verified lightning return-stroke model can contribute to solving the inverse-source problem, one of the most challenging problems in lightning research, where the lightning current characteristics are estimated based on the characteristics of the measured LEMP.


2021 ◽  
Author(s):  
Mariusz Milewski

One of the most important parameters in a lightning flash that is of interest to researchers is the lightning return-stroke current as it causes most of the destructions and disturbances in electrical and telecommunication networks. In most cases, the lightning return-stroke current can not be directly measured and current characteristics are determined from measured electric and magnetic fields through the use of lightning return-stroke models. The main objective of this work is the development of a lightning return-stroke model for an elevated object. Also, an important objective is the correlation of the wavefront parameters (peak, maximum rate of rise and risetime) of the return-stroke current with the wavefront parameters of its associated lightning electromagnetic pulse (LEMP), measured 2 km north of the tower. The developed field-current parameter relationships for CN Tower lightning return strokes are compared with those obtained from measurements conducted at the Peissenberg Tower in Germany. A 3-section transmission line (TL) model of the CN Tower, along with the derivative of the modified Heidler function, is used to simulate the measured current derivative signal. Then, the spatial-temporal distribution of the lightning current along the CN Tower and the lightning channel, during the lightning return-stroke phase, is determined. The presented model simulates the measured current derivative signal instead of the current as has been used by other researchers. The use of the derivative of the modified Heidler function to simulate the lightning current derivative proved to be superior than simulating the lightning current. For the quantitative assessment of the proposed model, a comparison between the simulated field, obtained through the usage of Maxwell’s equations and the simulated current, and the measured field is performed. The developed 3-section TL model based on the measured current derivative and the derivative of the modified Heidler function produced a simulated magnetic field that is much closer to the measured field in comparison with previous models. The developed field-current parameter relationships as well as the experimentally verified lightning return-stroke model can contribute to solving the inverse-source problem, one of the most challenging problems in lightning research, where the lightning current characteristics are estimated based on the characteristics of the measured LEMP.


2021 ◽  
Vol 118 (10) ◽  
pp. e2012870118
Author(s):  
Ziqi Wang ◽  
Enrico Calzavarini ◽  
Chao Sun ◽  
Federico Toschi

Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water-body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularities of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in the presence of turbulence. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front and stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occur under different thermal and geometrical conditions.


2020 ◽  
Vol 639 ◽  
pp. A104
Author(s):  
M. D. Stritzinger ◽  
F. Taddia ◽  
M. Fraser ◽  
T. M. Tauris ◽  
C. Contreras ◽  
...  

We present optical and near-infrared broadband photometry and optical spectra of AT 2014ej from the Carnegie Supernova Project-II. These observations are complemented with data from the CHilean Automatic Supernova sEarch, the Public ESO Spectroscopic Survey of Transient Objects, and from the Backyard Observatory Supernova Search. Observational signatures of AT 2014ej reveal that it is similar to other members of the gap-transient subclass known as luminous red novae (LRNe), including the ubiquitous double-hump light curve and spectral properties similar to that of LRN SN 2017jfs. A medium-dispersion visual-wavelength spectrum of AT 2014ej taken with the Magellan Clay telescope exhibits a P Cygni Hα feature characterized by a blue velocity at zero intensity of ≈110 km s−1 and a P Cygni minimum velocity of ≈70 km s−1. We attribute this to emission from a circumstellar wind. Inspection of pre-outbust Hubble Space Telescope images yields no conclusive progenitor detection. In comparison with a sample of LRNe from the literature, AT 2014ej lies at the brighter end of the luminosity distribution. Comparison of the ultra-violet, optical, infrared light curves of well-observed LRNe to common-envelope evolution models from the literature indicates that the models underpredict the luminosity of the comparison sample at all phases and also produce inconsistent timescales of the secondary peak. Future efforts to model LRNe should expand upon the current parameter space we explore here and therefore may consider more massive systems and a wider range of dynamical timescales.


Sign in / Sign up

Export Citation Format

Share Document