Soliton solutions of nonlinear Boussinesq models using the exponential function technique

2021 ◽  
Author(s):  
Shumaila Javeed ◽  
Dumitru Baleanu ◽  
Sidra Nawaz ◽  
Hadi Rezazadeh
Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 176
Author(s):  
Shumaila Javeed ◽  
Khurram Saleem Alimgeer ◽  
Sidra Nawaz ◽  
Asif Waheed ◽  
Muhammad Suleman ◽  
...  

This paper is based on finding the exact solutions for Burger’s equation, Zakharov-Kuznetsov (ZK) equation and Kortewegde vries (KdV) equation by utilizing exponential function method that depends on the series of exponential functions. The exponential function method utilizes the homogeneous balancing principle to find the solutions of nonlinear equations. This method is simple, wide-reaching and helpful for finding the exact solution of nonlinear conformable PDEs.


2018 ◽  
Vol 32 (24) ◽  
pp. 1850286 ◽  
Author(s):  
Qixing Qu ◽  
Li Zhang ◽  
Xiaoyue Liu ◽  
Fenghua Qi ◽  
Xianghua Meng

Analytic wave solutions including homoclinic wave, kink wave and soliton solutions for the 2D coupled complex Ginzburg–Landau equations are obtained using the auxiliary function method, Hirota method and the ansatz function technique under certain constraint conditions of coefficients in equations, respectively. The result shows that there exists a kink-wave solution which tends to one and the same periodic wave solution as time tends to infinite.


Author(s):  
Serbay Duran ◽  
Muzaffer Askin ◽  
Tukur Abdulkadir Sulaiman

In manuscript, with the help of the Wolfram Mathematica 9, we employ the modified exponential function method in obtaining some new soliton solutions to the ill-posed Boussinesq equation arising in nonlinear media. Results obtained with use of technique, and also, surfaces for soliton solutions are given. We also plot the 3D and 2D of each solution obtained in this study by using the same program in the Wolfram Mathematica 9.


Author(s):  
Haci Mehmet Baskonus

In this manuscript, new dark and trigonometric function traveling wave soliton solutions to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation by using the modified exponential function method are successfully obtained. Along with novel dark structures, trigonometric solutions are also extracted. For deeper investigating of waves propagation on the surface, 2D and 3D graphs along with contour simulations via computational programs such as Wolfram Mathematica, Matlap softwares and so on are presented.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950363 ◽  
Author(s):  
Dianchen Lu ◽  
Aly R. Seadawy ◽  
Iftikhar Ahmed

In this work, based on the Hirota bilinear method, mixed lump-solitons solutions and multi-peaks solitons are derived for a new extended (2[Formula: see text]+[Formula: see text]1)-dimensional Boussinesq equation by using ansatz function technique with symbolic computation. Through the mixed lump-solitons, we obtained two types of interaction phenomena, first from lump-single soliton solution and other from lump-two soliton solutions and their dynamics is given by three-dimensional plots and two-dimensional contour plots by taking appropriate values of given parameters. Furthermore, we obtained new patterns of multi-peaks solitons.


2018 ◽  
Vol 5 (1) ◽  
pp. 31-36
Author(s):  
Md Monirul Islam ◽  
Muztuba Ahbab ◽  
Md Robiul Islam ◽  
Md Humayun Kabir

For many solitary wave applications, various approximate models have been proposed. Certainly, the most famous solitary wave equations are the K-dV, BBM and Boussinesq equations. The K-dV equation was originally derived to describe shallow water waves in a rectangular channel. Surprisingly, the equation also models ion-acoustic waves and magneto-hydrodynamic waves in plasmas, waves in elastic rods, equatorial planetary waves, acoustic waves on a crystal lattice, and more. If we describe all of the above situation, we must be needed a solution function of their governing equations. The Tan-cot method is applied to obtain exact travelling wave solutions to the generalized Korteweg-de Vries (gK-dV) equation and generalized Benjamin-Bona- Mahony (BBM) equation which are important equations to evaluate wide variety of physical applications. In this paper we described the soliton behavior of gK-dV and BBM equations by analytical system especially using Tan-cot method and shown in graphically. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 5(1), Dec 2018 P 31-36


2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Vasile V. Morariu

The length of coding sequence (CDS) series in bacterial genomes were regarded as a fluctuating system and characterized by the methods of statistical physics. The distribution and the correlation properties of CDS for 47 genomes were investigated. The distribution was found to be approximated by an exponential function while the correlation analysis revealed short range correlations.


Sign in / Sign up

Export Citation Format

Share Document