On the wave instability of multi component electron acoustic plasma

2021 ◽  
Vol 96 (12) ◽  
pp. 125619
Author(s):  
S K Zaghbeer ◽  
E K El-Shewy
2021 ◽  
Vol 76 (4) ◽  
pp. 329-347
Author(s):  
Swarniv Chandra ◽  
Chinmay Das ◽  
Jit Sarkar

Abstract In this paper we have studied the gradual evolution of stationary formations in electron acoustic waves at a finite temperature quantum plasma. We have made use of Quantum hydrodynamics model equations and obtained the KdV-Burgers equation. From here we showed how the amplitude modulated solitons evolve from double layer structures through shock fronts and ultimately converging into solitary structures. We have studied the various parametric influences on such stationary structure and also showed how the gradual variations of these parameter affect the transition from one form to another. The results thus obtained will help in the generation and structure of the structures in their respective domain. Much of the experiments on dense plasma will benefit from the parametric study. Further we have studied amplitude modulation followed by a detailed study on chaos.


2016 ◽  
Vol 823 (2) ◽  
pp. 84 ◽  
Author(s):  
Tomohiro Ono ◽  
Takayuki Muto ◽  
Taku Takeuchi ◽  
Hideko Nomura

1999 ◽  
Vol 60 (7) ◽  
pp. 4850-4855 ◽  
Author(s):  
J. Cunningham ◽  
V. I. Talyanskii ◽  
J. M. Shilton ◽  
M. Pepper ◽  
M. Y. Simmons ◽  
...  

1987 ◽  
Vol 38 (3) ◽  
pp. 473-481 ◽  
Author(s):  
D. B. Melrose

A kinetic theory for nonlinear processes involving Langmuir waves, developed in an earlier paper, is extended through consideration of three aspects of the temporal evolution, (i) Following Falk & Tsytovich (1975). the dynamic equation for the rate of change of one amplitude at t is expressed as an integral over T of the product of two amplitudes at t – T and a kernel functionf(T); two generalizations of Falk & Tsytovich's form (f(T) ∝ T) that satisfy the requirement f(∞) = 0 are identified, (ii) It is shown that the low-frequency or beat disturbance may be described in terms of fluctuations in the electron number density, and that its time evolution involves an operator that is essentially the inverse of f(t). (iii) The transition from oscillatory evolution in the reactive or ‘coherent-wave’ version of the three-wave instability to the secular evolution of the resistive or ‘random-phase’ version is discussed qualitatively.


Sign in / Sign up

Export Citation Format

Share Document