scholarly journals Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

2018 ◽  
Vol 2018 (02) ◽  
pp. 039-039 ◽  
Author(s):  
Seokcheon Lee
2021 ◽  
Vol 2021 (12) ◽  
pp. 025
Author(s):  
Rebeca Martinez-Carrillo ◽  
Juan Carlos Hidalgo ◽  
Karim A. Malik ◽  
Alkistis Pourtsidou

Abstract We compute the real space galaxy power spectrum, including the leading order effects of General Relativity and primordial non-Gaussianity from the f NL and g NL parameters. Such contributions come from the one-loop matter power spectrum terms dominant at large scales, and from the factors of the non-linear bias parameter b NL (akin to the Newtonian b ϕ). We assess the detectability of these contributions in Stage-IV surveys. In particular, we note that specific values of the bias parameter may erase the primordial and relativistic contributions to the configuration space power spectrum.


2020 ◽  
Vol 500 (2) ◽  
pp. 2532-2542
Author(s):  
Linda Blot ◽  
Pier-Stefano Corasaniti ◽  
Yann Rasera ◽  
Shankar Agarwal

ABSTRACT Future galaxy surveys will provide accurate measurements of the matter power spectrum across an unprecedented range of scales and redshifts. The analysis of these data will require one to accurately model the imprint of non-linearities of the matter density field. In particular, these induce a non-Gaussian contribution to the data covariance that needs to be properly taken into account to realize unbiased cosmological parameter inference analyses. Here, we study the cosmological dependence of the matter power spectrum covariance using a dedicated suite of N-body simulations, the Dark Energy Universe Simulation–Parallel Universe Runs (DEUS-PUR) Cosmo. These consist of 512 realizations for 10 different cosmologies where we vary the matter density Ωm, the amplitude of density fluctuations σ8, the reduced Hubble parameter h, and a constant dark energy equation of state w by approximately $10{{\ \rm per\ cent}}$. We use these data to evaluate the first and second derivatives of the power spectrum covariance with respect to a fiducial Λ-cold dark matter cosmology. We find that the variations can be as large as $150{{\ \rm per\ cent}}$ depending on the scale, redshift, and model parameter considered. By performing a Fisher matrix analysis we explore the impact of different choices in modelling the cosmological dependence of the covariance. Our results suggest that fixing the covariance to a fiducial cosmology can significantly affect the recovered parameter errors and that modelling the cosmological dependence of the variance while keeping the correlation coefficient fixed can alleviate the impact of this effect.


2019 ◽  
Vol 491 (3) ◽  
pp. 3101-3107 ◽  
Author(s):  
M Cataneo ◽  
J D Emberson ◽  
D Inman ◽  
J Harnois-Déraps ◽  
C Heymans

ABSTRACT We analytically model the non-linear effects induced by massive neutrinos on the total matter power spectrum using the halo model reaction framework of Cataneo et al. In this approach, the halo model is used to determine the relative change to the matter power spectrum caused by new physics beyond the concordance cosmology. Using standard fitting functions for the halo abundance and the halo mass–concentration relation, the total matter power spectrum in the presence of massive neutrinos is predicted to per cent-level accuracy, out to $k=10 \,{ h}\,{\rm Mpc}^{-1}$. We find that refining the prescriptions for the halo properties using N-body simulations improves the recovered accuracy to better than 1 per cent. This paper serves as another demonstration for how the halo model reaction framework, in combination with a single suite of standard Λ cold dark matter (ΛCDM) simulations, can recover per cent-level accurate predictions for beyond ΛCDM matter power spectra, well into the non-linear regime.


2021 ◽  
Vol 2021 (08) ◽  
pp. 001
Author(s):  
Lucia F. de la Bella ◽  
Nicolas Tessore ◽  
Sarah Bridle

2007 ◽  
Vol 76 (8) ◽  
Author(s):  
Salman Habib ◽  
Katrin Heitmann ◽  
David Higdon ◽  
Charles Nakhleh ◽  
Brian Williams

2009 ◽  
Vol 705 (1) ◽  
pp. 156-174 ◽  
Author(s):  
Katrin Heitmann ◽  
David Higdon ◽  
Martin White ◽  
Salman Habib ◽  
Brian J. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document