scholarly journals Fifth-force screening around extremely compact sources

2021 ◽  
Vol 2021 (08) ◽  
pp. 052 ◽  
Author(s):  
Clare Burrage ◽  
Benjamin Elder ◽  
Peter Millington ◽  
Daniela Saadeh ◽  
Ben Thrussell
Keyword(s):  
2021 ◽  
Vol 103 (7) ◽  
Author(s):  
Hannah Banks ◽  
Matthew McCullough
Keyword(s):  

2019 ◽  
Vol 15 (S356) ◽  
pp. 383-384
Author(s):  
Seman Abaraya ◽  
Tolu Biressa

AbstractCompact objects are of great interest in astrophysical research. There are active research interests in understanding better various aspects of formation and evolution of these objects. In this paper we addressed some problems related to the compact objects mass limit. We employed Einstein field equations (EFEs) to derive the equation of state (EoS). With the assumption of high densities and low temperature of compact sources, the derived equation of state is reduced to polytropic kind. Studying the polytropic equations we obtained similar physical implications, in agreement to previous works. Using the latest version of Mathematica-11 in our numerical analysis, we also obtained similar results except slight differences in accuracy.


2019 ◽  
Vol 490 (4) ◽  
pp. 5134-5146 ◽  
Author(s):  
S Brownson ◽  
R Maiolino ◽  
M Tazzari ◽  
S Carniani ◽  
N Henden

ABSTRACT The Sunyaev–Zel’dovich (SZ) effect can potentially be used to investigate the heating of the circumgalactic medium and subsequent suppression of cold gas accretion on to the host galaxy caused by quasar feedback. We use a deep ALMA observation of HE0515-4414 in band 4, the most luminous quasar known at the peak of cosmic star formation (z = 1.7), to search for the SZ signal tracing the heating of the galaxy’s halo. ALMA’s sensitivity to a broad range of spatial scales enables us to disentangle emitting compact sources from the negative, extended SZ signal. We obtain a marginal SZ detection (∼3.3σ) on scales of about 300 kpc (30–40 arcsec), at the 0.2 mJy level, 0.5 mJy after applying a correction factor for primary beam attenuation and flux that is resolved out by the array. We show that our result is consistent with a simulated ALMA observation of a similar quasar in the fable cosmological simulations. We emphasize that detecting an SZ signal is more easily achieved in the visibility plane than in the (inferred) images. We also confirm a marginal detection (3.2σ) of a potential SZ dip on smaller scales (<100 kpc) already claimed by other authors, possibly highlighting the complex structure of the halo heating. Finally, we use SZ maps from the fable cosmological simulations, convolved with ALMA simulations, to illustrate that band 3 observations are much more effective in detecting the SZ signal with higher significance, and discuss the optimal observing strategy.


2008 ◽  
Vol 16 (4) ◽  
Author(s):  
P. Wachulak ◽  
M. Capeluto ◽  
C. Menoni ◽  
J. Rocca ◽  
M. Marconi

AbstractThe recent development of table top extreme ultraviolet (EUV) lasers have enabled new applications that so far were restricted to the use of large facilities. These compact sources bring now to the laboratory environment the capabilities that will allow a broader application of techniques related to nanotechnology and nanofabrication. In this paper we review the advances in the utilization of EUV lasers in nanopatterning. In particular we show results of the nanopatterning using a table-top capillary discharge laser producing 0.12-mJ laser pulses with 1.2-ns time duration at a wavelength λ = 46.9 nm. The nanopatterning was realized by interferometric lithography using a Lloyd’s mirror interferometer. Two standard photoresists were used in this work, polymethyl methacrylate (PMMA) and hydrogen silsesquioxane (HSQ). Pillars with a full width half maximum (FWHM) diameter of 60 nm and holes with FWHM diameter of 130 nm were obtained over areas in excess of 500×500 μm2.


1989 ◽  
Vol 136 (7-8) ◽  
pp. 343-347 ◽  
Author(s):  
C. Riveros ◽  
E.A. Logiudice ◽  
H. Vucetich

1989 ◽  
Vol 38 (2) ◽  
pp. 180-188 ◽  
Author(s):  
J.E. Faller ◽  
E. Fischbach ◽  
Y. Fujii ◽  
K. Kuroda ◽  
H.J. Paik ◽  
...  
Keyword(s):  

1991 ◽  
Vol 106 (11) ◽  
pp. 1299-1304 ◽  
Author(s):  
B. Bertotti ◽  
C. Sivaram
Keyword(s):  

2004 ◽  
Vol 13 (10) ◽  
pp. 2249-2254
Author(s):  
JASON H. STEFFEN

Many theories which unify gravity with the other known forces of nature predict the existence of an intermediate-range "fifth force" similar to gravity. Such a force could be manifest as a deviation from the gravitational inverse-square law. Currently, at distances near 10-1 m, the inverse-square law is known to be correct to about one part per thousand. I present the design of an experiment that will improve this limit by two orders of magnitude. This is accomplished by constructing a torsion pendulum and source mass apparatus that are particularly insensitive to Newtonian gravity and, simultaneously, maximally sensitive to violations of the same.


2017 ◽  
Vol 95 (6) ◽  
Author(s):  
Pedro G. Ferreira ◽  
Christopher T. Hill ◽  
Graham G. Ross
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document