The luminescence enhancement of Eu 3+ ion and SnO 2 nanocrystal co-doped sol—gel SiO 2 films

2012 ◽  
Vol 21 (1) ◽  
pp. 018101 ◽  
Author(s):  
Xiao-Wei Zhang ◽  
Tao Lin ◽  
Jun Xu ◽  
Ling Xu ◽  
Kun-Ji Chen
2014 ◽  
Vol 14 (5) ◽  
pp. 3494-3498 ◽  
Author(s):  
Xianju Zhou ◽  
Guangchuan Wang ◽  
Tonghui Zhou ◽  
Kaining Zhou ◽  
Qingxu Li ◽  
...  

2021 ◽  
Vol 126 ◽  
pp. 105675
Author(s):  
Yang Ren ◽  
Haiyan He ◽  
Yunwei Wang ◽  
Ying Gong ◽  
Gaoyang Zhao

Author(s):  
M.A. Zaitoun ◽  
A.K. El-Qisairi ◽  
K.A. Momani ◽  
H.A. Qaseer ◽  
Q.M. Jaradat

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 235
Author(s):  
Hayette Benkhennouche-Bouchene ◽  
Julien G. Mahy ◽  
Cédric Wolfs ◽  
Bénédicte Vertruyen ◽  
Dirk Poelman ◽  
...  

TiO2 prepared by a green aqueous sol–gel peptization process is co-doped with nitrogen and zirconium to improve and extend its photoactivity to the visible region. Two nitrogen precursors are used: urea and triethylamine; zirconium (IV) tert-butoxide is added as a source of zirconia. The N/Ti molar ratio is fixed regardless of the chosen nitrogen precursor while the quantity of zirconia is set to 0.7, 1.4, 2, or 2.8 mol%. The performance and physico-chemical properties of these materials are compared with the commercial Evonik P25 photocatalyst. For all doped and co-doped samples, TiO2 nanoparticles of 4 to 8 nm of size are formed of anatase-brookite phases, with a specific surface area between 125 and 280 m2 g−1 vs. 50 m2 g−1 for the commercial P25 photocatalyst. X-ray photoelectron (XPS) measurements show that nitrogen is incorporated into the TiO2 materials through Ti-O-N bonds allowing light absorption in the visible region. The XPS spectra of the Zr-(co)doped powders show the presence of TiO2-ZrO2 mixed oxide materials. Under visible light, the best co-doped sample gives a degradation of p-nitrophenol (PNP) equal to 70% instead of 25% with pure TiO2 and 10% with P25 under the same conditions. Similarly, the photocatalytic activity improved under UV/visible reaching 95% with the best sample compared to 50% with pure TiO2. This study suggests that N/Zr co-doped TiO2 nanoparticles can be produced in a safe and energy-efficient way while being markedly more active than state-of-the-art photocatalytic materials under visible light.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Kangqiang Huang ◽  
Li Chen ◽  
Jianwen Xiong ◽  
Meixiang Liao

The Fe-N co-doped TiO2nanocomposites were synthesized by a sol-gel method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS). Then the photocatalytic inactivation of Fe-N-doped TiO2on leukemia tumors was investigated by using Cell Counting Kit-8 (CCK-8) assay. Additionally, the ultrastructural morphology and apoptotic percentage of treated cells were also studied. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited in groups treated with TiO2nanoparticles and the photocatalytic activity of Fe-N-TiO2was significantly higher than that of Fe-TiO2and N-TiO2, indicating that the photocatalytic efficiency could be effectively enhanced by the modification of Fe-N. Furthermore, when 2 wt% Fe-N-TiO2nanocomposites at a final concentration of 200 μg/mL were used, the inactivation efficiency of 78.5% was achieved after 30-minute light therapy.


2014 ◽  
Vol 50 (8) ◽  
pp. 1-4 ◽  
Author(s):  
Robina Ashraf ◽  
Saira Riaz ◽  
Mahwish Bashir ◽  
Usman Khan ◽  
Shahzad Naseem

2011 ◽  
Vol 197-198 ◽  
pp. 891-894 ◽  
Author(s):  
Cheng Zhi Jiang ◽  
Xu Dong Lu

Pure TiO2, Eu3+and Sm3+co-doping TiO2composite nanoparticles have been prepared by sol-gel method and characterized by the techniques such as XRD, SEM and DRS. The photocatalytic degradation of methylene blue (MB) in aqueous solution was used as a probe reaction to evaluate their photocatalytic activity. The matrix distortion of TiO2nano-particles increases after co-doping of Eu3+and Sm3+and a blue-shift of the absorption profile are clearly observed. The results show that co-doping of Eu3+and Sm3+inhibits the phase transformation of TiO2from anatase to rutile, decreases the diameter of TiO2nano-particles and significantly enhance the photocatalytic activity of TiO2. The Eu3+and Sm3+co-doped into TiO2nano-particles exert a synergistic effect on their photocatalytic activity.


Sign in / Sign up

Export Citation Format

Share Document