Orientation-dependent morphological stability of grain boundary groove

2014 ◽  
Vol 23 (12) ◽  
pp. 124702 ◽  
Author(s):  
Li-Lin Wang ◽  
Xin Lin ◽  
Zhi-Jun Wang ◽  
Wei-Dong Huang
1972 ◽  
Vol 11 (62) ◽  
pp. 265-277 ◽  
Author(s):  
Shigenao Suzuki ◽  
Daisuke Kuroiwa

Abstract Relative grain-boundary energies in ice were measured as a function of mismatch angles made by the c-axes or a-axes in grains, using ice specimens having triple grain boundaries. It was found that the Read–Shockley equation for grain-boundary energy was valid for grain boundaries tilted between 0° and 15°. Angles of the solid–vapour grain-boundary groove in ice were measured by the use of micro-interferometry at grain-boundary grooves covered with extremely thin metalic foil. The data were compared with those measured by a silvered replica of grain-boundary grooves.


2004 ◽  
Vol 810 ◽  
Author(s):  
H.B. Yao ◽  
D.Z. Chi ◽  
S. Tripathy ◽  
S.Y. Chow ◽  
W.D. Wang ◽  
...  

ABSTRACTThe germanosilicidation of Ni on strained (001) Si0.8Ge0.2, particularly Ge segregation, grain boundary grooving, and surface morphology, during rapid thermal annealing (RTA) was studied. High-resolution cross-sectional transmission electron microscopy (HRXTEM) suggested that Ge-rich Si1−zGez segregation takes place preferentially at the germanosilicide/Si1−xGex interface, more specifically at the triple junctions between two adjacent NiSi1−uGeu grains and the underlying epi Si1−xGex, and it is accompanied with thermal grooving process. The segregation process accelerates the thermal grooving of NiSi1−uGeu grain boundaries at the interface. The segregation-accelerated grain boundary grooving has significant effect on the surface morphology of NiSi1−uGeu films in Ni-SiGe system.


1999 ◽  
Vol 14 (6) ◽  
pp. 2548-2553 ◽  
Author(s):  
Minxian Jin ◽  
Eriko Shimada ◽  
Yasuro Ikuma

High-purity SrTiO3 bicrystal sample (the angle between two [001] directions is 24°) was used in the present experiment to develop a thermal grain boundary groove along the bicrystal grain boundary at different temperatures (1150–1400 °C) and times (15–6720 min) in air. An atomic force microscope (AFM) was used to observe the surface morphological change in the annealed bicrystal sample in order to measure the width W and depth h of the developed grain boundary groove. It was found that the log W–log t (at 1150–1400 °C) and the log h°log t (at 1400 °C) relationships are approximately linear, having slopes of approximately 1/4. Using Mullins' formulas, the surface diffusion coefficients of SrTiO3 at different temperatures were calculated. Finally, the surface diffusion coefficient determined in the present experiment appears to correspond to the titanium atom, which has the lowest diffusivity in SrTiO3.


Sign in / Sign up

Export Citation Format

Share Document