Solvability of a class of PT -symmetric non-Hermitian Hamiltonians: Bethe ansatz method

2017 ◽  
Vol 26 (6) ◽  
pp. 060301 ◽  
Author(s):  
M Baradaran ◽  
H Panahi
Keyword(s):  
2001 ◽  
Vol 64 (3) ◽  
pp. 445-467
Author(s):  
Anthony J. Bracken ◽  
Xiang-Yu Ge ◽  
Mark D. Gould ◽  
Huan-Qiang Zhou

Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z2-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.


1981 ◽  
Vol 24 (5) ◽  
pp. 2634-2639 ◽  
Author(s):  
Michael Fowler ◽  
Xenophon Zotos
Keyword(s):  

2005 ◽  
Vol 48 (2) ◽  
pp. 157-165 ◽  
Author(s):  
S.-J. Gu ◽  
N. M.R. Peres ◽  
Y.-Q. Li

2019 ◽  
pp. 667-686
Author(s):  
Hans-Peter Eckle

The Bethe ansatz genuinely considers a finite system. The extraction of finite-size results from the Bethe ansatz equations is of genuine interest, especially against the background of the results of finite-size scaling and conformal symmetry in finite geometries. The mathematical techniques introduced in chapter 19 permit a systematic treatment in this chapter of finite-size corrections as corrections to the thermodynamic limit of the system. The application of the Euler-Maclaurin formula transforming finite sums into integrals and finite-size corrections transforms the Bethe ansatz equations into Wiener–Hopf integral equations with inhomogeneities representing the finite-size corrections solvable using the Wiener–Hopf technique. The results can be compared to results for finite systems obtained from other approaches that are independent of the Bethe ansatz method. It briefly discusses higher-order corrections and offers a general assessment of the finite-size method.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
ZiLong Zhao ◽  
ZhengWen Long ◽  
MengYao Zhang

The generalized Dirac oscillator as one of the exact solvable models in quantum mechanics was introduced in 2+1-dimensional world in this paper. What is more, the general expressions of the exact solutions for these models with the inverse cubic, quartic, quintic, and sixth power potentials in radial Dirac equation were further given by means of the Bethe ansatz method. And finally, the corresponding exact solutions in this paper were further discussed.


2001 ◽  
Vol 15 (06n07) ◽  
pp. 213-218
Author(s):  
XIANG-YU GE

A new completely integrable model of strongly correlated electrons is proposed which describes two competitive interactions: one is the correlated one-particle hopping, the other is the Hubbard-like interaction. The integrability follows from the fact that the Hamiltonian is derivable from a one-parameter family of commuting transfer matrices. The Bethe ansatz equations are derived by algebraic Bethe ansatz method.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
M. Baradaran ◽  
H. Panahi

Applying the Bethe ansatz method, we investigate the Schrödinger equation for the three quasi-exactly solvable double-well potentials, namely, the generalized Manning potential, the Razavy bistable potential, and the hyperbolic Shifman potential. General exact expressions for the energies and the associated wave functions are obtained in terms of the roots of a set of algebraic equations. Also, we solve the same problems using the Lie algebraic approach of quasi-exact solvability through the sl(2) algebraization and show that the results are the same. The numerical evaluation of the energy spectrum is reported to display explicitly the energy levels splitting.


1987 ◽  
Vol 36 (1) ◽  
pp. 409-417 ◽  
Author(s):  
A. L. Kholodenko ◽  
A. L. Beyerlein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document