Study of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications: abinitio calculations

2021 ◽  
Author(s):  
Muhammad Rashid ◽  
M. Jamil ◽  
Q. Mahmood ◽  
Shahid M Ramay ◽  
Asif Mahmood ◽  
...  
2015 ◽  
Vol 229 (1-2) ◽  
Author(s):  
Stephen V. Kershaw ◽  
Andrey L. Rogach

AbstractThe development of the research into the synthesis and optoelectronic applications of HgTe and related quantum dots (QDs) is reviewed, from the early days when it was felt that it might be a useful replacement for rare earths in telecom optical amplifiers, through to its more recent and broader appeal as an IR photodetector technology. Appropriately the early investigation of the material sprang from a contact with Prof. Horst Weller and his group at Hamburg University. Though the problem of Auger recombination meant that it was not so easy to make telecom amplifiers and lasers as many had hoped, it has proved to have an extraordinarily broad bandgap tuning range and just recently this has resulted in the demonstration of photodetectors in the mid- to long-IR region operating at up to 12 μm wavelength. This impressive flexibility has led to interest in HgTe QDs and optoelectronic devices based on them to be as strong as ever and growing as the prospects for commercialization improve with every narrowing in the gap between the performance of present day epitaxial devices and QD-based technology. In a further satisfying and well timed twist, Prof. Weller's 60


2019 ◽  
Author(s):  
Torben Sick ◽  
Niklas Keller ◽  
Nicolai Bach ◽  
Andreas Koszalkowski ◽  
Julian Rotter ◽  
...  

Covalent organic frameworks (COFs), consisting of covalently connected organic building units, combine attractive features such as crystallinity, open porosity and widely tunable physical properties. For optoelectronic applications, the incorporation of heteroatoms into a 2D COF has the potential to yield desired photophysical properties such as lower band gaps, but can also cause lateral offsets of adjacent layers. Here, we introduce dibenzo[g,p]chrysene (DBC) as a novel building block for the synthesis of highly crystalline and porous 2D dual-pore COFs showing interesting properties for optoelectronic applications. The newly synthesized terephthalaldehyde (TA), biphenyl (Biph), and thienothiophene (TT) DBC-COFs combine conjugation in the a,b-plane with a tight packing of adjacent layers guided through the molecular DBC node serving a specific docking site for successive layers. The resulting DBC-COFs exhibit a hexagonal dual-pore kagome geometry, which is comparable to COFs containing another molecular docking site, namely 4,4′,4″,4‴-(ethylene-1,1,2,2-tetrayl)-tetraaniline (ETTA). In this context, the respective interlayer distances decrease from about 4.60 Å in ETTA-COFs to about 3.6 Å in DBC-COFs, leading to well-defined hexagonally faceted single crystals sized about 50-100 nm. The TT DBC-COFs feature broad light absorption covering large parts of the visible spectrum, while Biph DBC-COF shows extraordinary excited state lifetimes exceeding 10 ns. In combination with the large number of recently developed linear conjugated building blocks, the new DBC tetra-connected node is expected to enable the synthesis of a large family of strongly p-stacked, highly ordered 2D COFs with promising optoelectronic properties.


2019 ◽  
Vol 13 (6) ◽  
pp. 1800658 ◽  
Author(s):  
Yan Xiong ◽  
HuaWei Chen ◽  
David Wei Zhang ◽  
Peng Zhou

Sign in / Sign up

Export Citation Format

Share Document