Synchronous detection of multiple optical characteristics of atmospheric aerosol by coupled photoacoustic cavity

2021 ◽  
Author(s):  
Hua-wei Jin ◽  
Ren-Zhi Hu ◽  
Xie Pin-hua ◽  
Luo Ping

Abstract Due to the influence of sampling loss, cavity difference and detecting source, the multi-optical parameter measurement of atmospheric aerosol cannot be detected simultaneously under the same reference. In order to solve this problem, a new method for simultaneous detection of aerosol optical parameters by coupling cavity ring-down spectroscopy with photoacoustic spectroscopy was proposed. Firstly, the coupled photoacoustic cavity is formed by the organic fusion of the photoacoustic cavity and the ring-down cavity. Secondly, the integrated design of the coupling spectroscopy system is carried out. Finally, the extinction coefficient and absorption coefficient of aerosol are measured simultaneously by the system, and then the aerosol scattering coefficient and single albedo are calculated indirectly. The accuracy of the system is verified by comparing with the data from the environmental quality monitoring station, which provides a new idea for the detection of multi-optical characteristics of atmospheric aerosol.

2018 ◽  
Vol 37 ◽  
pp. 03004
Author(s):  
Abdelouahid Tahiri ◽  
Mohamed Diouri

The atmospheric aerosol contributes to the definition of the climate with direct effect, the diffusion and absorption of solar and terrestrial radiations, and indirect, the cloud formation process where aerosols behave as condensation nuclei and alter the optical properties. Satellites and ground-based networks (solar photometers) allow the terrestrial aerosol observation and the determination of impact. Desert aerosol considered among the main types of tropospheric aerosols whose optical property uncertainties are still quite important. The analysis concerns the optical parameters recorded in 2015 at Ouarzazate solar photometric station (AERONET/PHOTONS network, http://aeronet.gsfc.nasa.gov/) close to Saharan zone. The daily average aerosol optical depthτaer at 0.5μm, are relatively high in summer and less degree in spring (from 0.01 to 1.82). Daily average of the Angstrom coefficients α vary between 0.01 and 1.55. The daily average of aerosol radiative forcing at the surface range between -150W/m2 and -10 W/m2 with peaks recorded in summer, characterized locally by large loads of desert aerosol in agreement with the advections of the Southeast of Morocco. Those recorded at the Top of the atmosphere show a variation from -74 W/m2 to +24 W/m2


2018 ◽  
Author(s):  
Angela Benedetti ◽  
Jeffrey S. Reid ◽  
Alexander Baklanov ◽  
Sara Basart ◽  
Olivier Boucher ◽  
...  

Abstract. Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centres due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation and military authorities, solar energy plant managers, providers of climate services, and health professionals. The prediction of aerosol particle properties in Numerical Weather Prediction (NWP) models faces a number of challenges owing to the complexity of atmospheric aerosol processes and their sensitivity to the underlying meteorological conditions. Errors in aerosol prediction concern all processes involved in the aerosol life cycle. These include errors on the source terms (for both anthropogenic and natural emissions), errors directly dependent on the meteorology (e.g., mixing, transport, scavenging by precipitation), as well as errors related to aerosol chemistry (e.g., nucleation, gas-aerosol partitioning, chemical transformation and growth, hygroscopicity). The main goal of current research on aerosol forecast consists in prioritizing these errors and trying to reduce the most important ones through model development and data assimilation. Aerosol particle observations from satellite and ground-based platforms have been crucial to guide model development of the recent years, and have been made more readily available for model evaluation and assimilation. However, for the sustainability of the aerosol particle prediction activities around the globe, it is crucial that quality aerosol observations continue to be made available from different platforms (space, near-surface, and aircraft) and freely shared. This white paper reviews current requirements for aerosol observations in the context of the operational activities carried out at various global and regional centres. Some of the requirements are equally applicable to aerosol-climate research. However, the focus here is on the global operational prediction of aerosol properties such as mass concentrations and optical parameters. Most operational models are based on bulk schemes that do not predict the size distribution of the aerosol particles. Others are based on a mix of bin and bulk schemes with limited capability to simulate the size information. However the next generation of aerosol operational models will have the capability to predict both mass and number density which will provide a more complete description of the aerosols properties. A brief overview of the state-of-the-art is provided with an introduction on the importance of aerosol prediction activities. The criteria on which the requirements for aerosol observations are based are also outlined. Assimilation and evaluation aspects are discussed from the perspective of the user requirements.


2015 ◽  
Vol 72 ◽  
pp. 71-79 ◽  
Author(s):  
Christian Guijarro ◽  
Karen Fuchs ◽  
Ulrich Bohrn ◽  
Evamaria Stütz ◽  
Stefan Wölfl

Author(s):  
Victor M. Anishchik ◽  
Valiantzina A. Harushka ◽  
Uladzimir A. Pilipenka ◽  
Vladimir V. Ponariadov ◽  
Vitali A. Saladukha ◽  
...  

The results of the effect of rapid heat treatment on the optical characteristics of a silicon wafer surface in the region of the G-point in the Brillouin zone are presented for different types of silicon wafers conductivity, their doping level, the covalent radii of dopants and the crystallographic orientation of the wafer surface. The absorption coefficient and refractive index of the initial 100 mm diameter samples KDB-12 <100>, KDB-10 <111>, KDB-0.005 <100> and KES-0.015 <100>, underwent standard chemical-mechanical polishing, was measured on a Uvisel 2 ellipsometer (Horiba Scientific, France) in the spectral range 0.6–6.0 eV (200–2100 nm) before and after rapid heat treatment. The incidence angle of the light beam was 70° relative to the sample plane. It is shown that the changes in the optical characteristics of the silicon surface in the spectral region of the location of the G-point in the Brillouin zone after rapid heat treatment is due to a decrease in the surface deformation potential due to solid-phase recrystallisation of the mechanically damaged layer. It has been established that carrying out the rapid heat treatment of silicon samples with a high boron concentration leads to a more significant decrease in the refractive index and absorption compared with silicon with a low boron concentration, due to an increase in the depletion of the silicon surface with boron as a result of diffusion processes at the silicon – silicon dioxide interface.


Sign in / Sign up

Export Citation Format

Share Document