scholarly journals Absolute parameters of young stars: PU Pup

2021 ◽  
Vol 21 (10) ◽  
pp. 256
Author(s):  
Ahmet Erdem ◽  
Derya Sürgit ◽  
Timothy S. Banks ◽  
Burcu Özkardeş ◽  
Edwin Budding

Abstract We present combined photometric and spectroscopic analyses of the southern binary star PU Pup. High-resolution spectra of this system were taken at the University of Canterbury Mt. John Observatory in the years 2008 and again in 2014–2015. We find the light contribution of the secondary component to be only ∼2% of the total light of the system in optical wavelengths, resulting in a single-lined spectroscopic binary. Recent TESS data revealed grazing eclipses within the light minima, though the tidal distortion, examined also from Hipparcos data, remains the predominating light curve effect. Our model shows PU Pup to have the more massive primary relatively close to filling its Roche lobe. PU Pup is thus approaching the rare ‘fast phase’ of interactive (Case B) evolution. Our adopted absolute parameters are as follows: M 1 = 4.10 (±0.20) M ⊙, M 2 = 0.65 (±0.05) M ⊙, R 1 = 6.60 (±0.30) R ⊙, R 2 = 0.90 (±0.10) R ⊙; T 1 = 11500 (±500) K, T 2 = 5000 (±350) K; photometric distance = 186 (±20) pc, age = 170 (±20) Myr. The less-massive secondary component is found to be significantly oversized and overluminous compared to standard main sequence models. We discuss this discrepancy referring to heating from the reflection effect.

1998 ◽  
Vol 11 (1) ◽  
pp. 565-565
Author(s):  
G. Cayrel de Strobel ◽  
R. Cayrel ◽  
Y. Lebreton

After having studied in great detail the observational HR diagram (log Teff, Mbol) composed by 40 main sequence stars of the Hyades (Perryman et al.,1997, A&A., in press), we have tried to apply the same method to the observational main sequences of the three next nearest open clusters: Coma Berenices, the Pleiades, and Praesepe. This method consists in comparing the observational main sequence of the clusters with a grid of theoretical ZAMSs. The stars composing the observational main sequences had to have reliable absolute bolometric magnitudes, coming all from individual Hipparcos parallaxes, precise bolometric corrections, effective temperatures and metal abundances from high resolution detailed spectroscopic analyses. If we assume, following the work by Fernandez et al. (1996, A&A,311,127), that the mixing-lenth parameter is solar, the position of a theoretical ZAMS, in the (log Teff, Mbol) plane, computed with given input physics, only depends on two free parameters: the He content Y by mass, and the metallicity Z by mass. If effective temperature and metallicity of the constituting stars of the 4 clusters are previously known by means of detailed analyses, one can deduce their helium abundances by means of an appropriate grid of theoretical ZAMS’s. The comparison between the empirical (log Teff, Mbol) main sequence of the Hyades and the computed ZAMS corresponding to the observed metallicity Z of the Hyades (Z= 0.0240 ± 0.0085) gives a He abundance for the Hyades, Y= 0.26 ± 0.02. Our interpretation, concerning the observational position of the main sequence of the three nearest clusters after the Hyades, is still under way and appears to be greatly more difficult than for the Hyades. For the moment we can say that: ‒ The 15 dwarfs analysed in detailed in Coma have a solar metallicity: [Fe/H] = -0.05 ± 0.06. However, their observational main sequence fit better with the Hyades ZAMS. ‒ The mean metallicity of 13 Pleiades dwarfs analysed in detail is solar. A metal deficient and He normal ZAMS would fit better. But, a warning for absorption in the Pleiades has to be recalled. ‒ The upper main sequence of Praesepe, (the more distant cluster: 180 pc) composed by 11 stars, analysed in detail, is the one which has the best fit with the Hyades ZAMS. The deduced ‘turnoff age’ of the cluster is slightly higher than that of the Hyades: 0.8 Gyr instead of 0.63 Gyr.


2019 ◽  
Vol 627 ◽  
pp. A135 ◽  
Author(s):  
A. Bhardwaj ◽  
N. Panwar ◽  
G. J. Herczeg ◽  
W. P. Chen ◽  
H. P. Singh

Context. Pre-main-sequence variability characteristics can be used to probe the physical processes leading to the formation and initial evolution of both stars and planets. Aims. The photometric variability of pre-main-sequence stars is studied at optical wavelengths to explore star–disk interactions, accretion, spots, and other physical mechanisms associated with young stellar objects. Methods. We observed a field of 16′ × 16′ in the star-forming region Pelican Nebula (IC 5070) at BVRI wavelengths for 90 nights spread over one year in 2012−2013. More than 250 epochs in the VRI bands are used to identify and classify variables up to V ∼ 21 mag. Their physical association with the cluster IC 5070 is established based on the parallaxes and proper motions from the Gaia second data release (DR2). Multiwavelength photometric data are used to estimate physical parameters based on the isochrone fitting and spectral energy distributions. Results. We present a catalog of optical time-series photometry with periods, mean magnitudes, and classifications for 95 variable stars including 67 pre-main-sequence variables towards star-forming region IC 5070. The pre-main-sequence variables are further classified as candidate classical T Tauri and weak-line T Tauri stars based on their light curve variations and the locations on the color-color and color-magnitude diagrams using optical and infrared data together with Gaia DR2 astrometry. Classical T Tauri stars display variability amplitudes up to three times the maximum fluctuation in disk-free weak-line T Tauri stars, which show strong periodic variations. Short-term variability is missed in our photometry within single nights. Several classical T Tauri stars display long-lasting (≥10 days) single or multiple fading and brightening events of up to two magnitudes at optical wavelengths. The typical mass and age of the pre-main-sequence variables from the isochrone fitting and spectral energy distributions are estimated to be ≤1 M⊙ and ∼2 Myr, respectively. We do not find any correlation between the optical amplitudes or periods with the physical parameters (mass and age) of pre-main-sequence stars. Conclusions. The low-mass pre-main-sequence stars in the Pelican Nebula region display distinct variability and color trends and nearly 30% of the variables exhibit strong periodic signatures attributed to cold spot modulations. In the case of accretion bursts and extinction events, the average amplitudes are larger than one magnitude at optical wavelengths. These optical magnitude fluctuations are stable on a timescale of one year.


2018 ◽  
Vol 14 (A30) ◽  
pp. 133-133
Author(s):  
Swetlana Hubrig ◽  
Fiorella Castelli ◽  
Silva P. Järvinen

AbstractAK Sco is an SB2 system formed by two nearly identical Herbig Ae stars, with Teff = 6500K and log g = 4.5, surrounded by a circumbinary disk. This actively accreting system is of special interest among the pre-main-sequence binaries because of its prominent ultraviolet excess and the high eccentricity of its orbit. Moreover, recent spectropolarimetric observations using HARPSpol indicate the presence of a weak magnetic field in the secondary component (Järvinen et al. 2018). An abundance analysis of both components has shown that all elements have a solar abundance in the two stars, except for Li and Ba. These elements are enhanced by 2.2 and 0.5 dex, respectively, in the A component and by 2.4 and 0.5 dex, respectively, in the B component.


2006 ◽  
Vol 2 (S240) ◽  
pp. 686-689
Author(s):  
K.B. Johnston ◽  
T.D. Oswalt ◽  
D. Valls-Gabaud

AbstractPost-main-sequence (MS) mass loss causes orbital separation amplification in fragile (i.e. common proper motion) binary star systems. Components typically have separations around ∼1000 AU. Such wide pairs experience negligible tidal interactions and mass transfer between companions; thus they evolve as two separate but coeval stars. In this paper we compute the rate of mass loss during the components' lifetimes and attempt to model how it will statistically distort a frequency distribution of fragile binary separations. Understanding this process provides a robust test of current theories of stellar evolution and sets constraints on the dynamics of the Galactic disk.


2002 ◽  
Vol 123 (2) ◽  
pp. 1013-1022 ◽  
Author(s):  
Claud H. Sandberg Lacy ◽  
Guillermo Torres ◽  
Antonio Claret ◽  
Jeffrey A. Sabby

1993 ◽  
Vol 155 ◽  
pp. 91-91
Author(s):  
R.W. Tweedy

A high-resolution IUE spectral atlas of central stars of planetary nebulae and hot white dwarfs has been produced (part of Tweedy, 1991, PhD thesis from the University of Leicester, UK), and examples from it are shown here. It has been sorted into an approximate evolutionary sequence, based on published spectroscopic analyses, from the cool 28,000K young central star He 2–138, through the hot objects like NGC 7293 and NGC 246 at 90,000K and 130,000K respectively, down to 40,000K DA white dwarfs like GD 2, which is the chosen cutoff for this selection. Copies of a revised version of this atlas, which will include more recent spectroscopic information and also white dwarfs down to 35,000K – to include the Si III object GD 394 – will be sent to anyone who requests one.


2020 ◽  
Vol 493 (4) ◽  
pp. 5162-5169 ◽  
Author(s):  
M D Reed ◽  
K A Shoaf ◽  
P Németh ◽  
J Vos ◽  
M Uzundag ◽  
...  

ABSTRACT Transiting Exoplanet Survey Satellite (TESS) observations show CD−28° 1974 to be a gravity(g)-mode-dominated hybrid pulsating subdwarf B (sdBV) star. It shows 13 secure periods that form an ℓ = 1 asymptotic sequence near the typical period spacing. Extraordinarily, these periods lie between 1500 and 3300 s, whereas typical $\ell = 1\, g$ modes in sdBV stars occur between 3300 and 10 000 s. This indicates a structure somewhat different from typical sdBV stars. CD−28° 1974 has a visually close F/G main-sequence companion 1.33 arcsec away, which may be a physical companion. Gaia proper motions indicate a comoving pair with the same distance. A reanalysis of Ultraviolet and Visual Echelle Spectrograph (UVES) spectra failed to detect any orbital motion and the light curve shows no reflection effect or ellipsoidal variability, making an unseen close companion unlikely. The implication is that CD−28° 1974 has become a hot subdwarf via single star or post-merger evolution.


1986 ◽  
Vol 90 ◽  
pp. 369-380
Author(s):  
Kozo Sadakane

AbstractSpectroscopic studies of normal O and early B type stars in the visual region are discussed. Present status of UV spectroscopic analyses of hot normal stars is reviewed. Discussions on a few practical problems in analyses of UV spectra are presented.


2020 ◽  
Vol 493 (2) ◽  
pp. 2659-2675
Author(s):  
Derya Sürgit ◽  
Ahmet Erdem ◽  
Chris A Engelbrecht ◽  
Fred Marang

ABSTRACT We present combined photometric and spectroscopic analyses of the three southern eclipsing binary stars: DQ Car, BK Ind, and V4396 Sgr. Radial velocity curves of these three systems were obtained at the South African Astronomical Observatory, and their light curves from the available data bases and surveys were used for the analysis. 75 new times of minima for these three eclipsing binaries were derived, and their ephemerides were updated. Only the O–C diagram of DQ Car indicates a cyclical variation, which was interpreted in terms of the light-time effect due to a third body in the system. Our final models describe these three systems as Algol-like binary stars with detached configurations. The masses and radii were found to be M1 = 1.86(±0.17) M⊙, R1 = 1.63(±0.06) R⊙ and M2 = 1.74(±0.17) M⊙, R2 = 1.52(±0.07) R⊙ for the primary and secondary components of DQ Car; M1 = 1.16(±0.05) M⊙, R1 = 1.33(±0.03) R⊙ and M2 = 0.98(±0.04) M⊙, R2 = 1.00(±0.03) R⊙ for BK Ind; and M1 = 3.14(±0.22) M⊙, R1 = 3.00(±0.09) R⊙ and M2 = 3.13(±0.24) M⊙, R2 = 2.40(±0.08) R⊙ for V4396 Sgr, respectively. The distances to DQ Car, BK Ind, and V4396 Sgr were derived to be 701(±50), 285(±20), and 414(±30) pc from the distance modulus formula, taking into account interstellar extinction. The evolutionary status of these three systems was also studied. It has been found that the components of DQ Car are very young stars at the age of ∼25 Myr and those of BK Ind and V4396 Sgr are evolved main-sequence stars at the ages of ∼2.69 Gyr and ∼204 Myr, respectively.


Sign in / Sign up

Export Citation Format

Share Document