Design of a high performance CMOS charge pump for phase-locked loop synthesizers

2011 ◽  
Vol 32 (7) ◽  
pp. 075007 ◽  
Author(s):  
Zhiqun Li ◽  
Shuangshuang Zheng ◽  
Ningbing Hou
Author(s):  
P.N. Metange ◽  
K. B. Khanchandani

<p>This paper presents the analysis and design of high performance phase frequency detector, charge pump and loop filter circuits for phase locked loop in wireless applications. The proposed phase frequency detector (PFD) consumes only 8 µW and utilises small area. Also, at 1.8V voltage supply the maximum operation frequency of the conventional PFD is 500 MHz whereas proposed PFD is 5 GHz. Hence, highly suitable for low power, high speed and low jitter applications.  The differential charge pump uses switches using NMOS and the inverter delays for up and down signals do not generate any offset due to its fully symmetric operation. This configuration doubles the range of output voltage compliance compared to single ended charge pump. Differential stage is less sensitive to the leakage current since leakage current behaves as common mode offset with the dual output stages. All the circuits are implemented using cadence 0.18 μm CMOS Process.</p>


Author(s):  
Yong-Li Yang ◽  
Xing-Hua Wang ◽  
Xiao-Yan Gui ◽  
Zheng-Chen Wang

2016 ◽  
Vol E99.C (1) ◽  
pp. 143-146
Author(s):  
Roger Yubtzuan CHEN ◽  
Zong-Yi YANG ◽  
Hongchin LIN

2021 ◽  
pp. 2140002
Author(s):  
Yanbo Chen ◽  
Shubin Zhang

Phase Locked Loop (PLL) circuit plays an important part in electronic communication system in providing high-frequency clock, recovering the clock from data signal and so on. The performance of PLL affects the whole system. As the frequency of PLL increases, designing a PLL circuit with lower jitter and phase noise becomes a big challenge. To suppress the phase noise, the optimization of Voltage Controlled Oscillator (VCO) is very important. As the power supply voltage degrades, the VCO becomes more sensitive to supply noise. In this work, a three-stage feedforward ring VCO (FRVCO) is designed and analyzed to increase the output frequency. A novel supply-noise sensing (SNS) circuit is proposed to suppress the supply noise’s influence on output frequency. Based on these, a 1.2 V 2 GHz PLL circuit is implemented in 110 nm CMOS process. The phase noise of this CMOS charge pump (CP) PLL is 117 dBc/Hz@1 MHz from test results which proves it works successfully in suppressing phase noise.


SIMULATION ◽  
1988 ◽  
Vol 50 (4) ◽  
pp. 155-160 ◽  
Author(s):  
Sumer Can ◽  
Yilmaz E. Sahinkaya

2015 ◽  
Vol 16 (5) ◽  
pp. 241-249 ◽  
Author(s):  
Labonnah Farzana Rahman ◽  
NurHazliza Bt Ariffin ◽  
Mamun Bin Ibne Reaz ◽  
Mohammad Marufuzzaman

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 504
Author(s):  
Ranran Zhao ◽  
Yuming Zhang ◽  
Hongliang Lv ◽  
Yue Wu

This paper realized a charge pump phase locked loop (CPPLL) frequency source circuit based on 0.15 μm Win GaAs pHEMT process. In this paper, an improved fully differential edge-triggered frequency discriminator (PFD) and an improved differential structure charge pump (CP) are proposed respectively. In addition, a low noise voltage-controlled oscillator (VCO) and a static 64:1 frequency divider is realized. Finally, the phase locked loop (PLL) is realized by cascading each module. Measurement results show that the output signal frequency of the proposed CPPLL is 3.584 GHz–4.021 GHz, the phase noise at the frequency offset of 1 MHz is −117.82 dBc/Hz, and the maximum output power is 4.34 dBm. The chip area is 2701 μm × 3381 μm, and the power consumption is 181 mw.


Sign in / Sign up

Export Citation Format

Share Document