scholarly journals Monte Carlo evaluation of the continuum limit of (ϕ12)3

2021 ◽  
Vol 2021 (8) ◽  
pp. 083102
Author(s):  
Riccardo Fantoni
1982 ◽  
Vol 113 (6) ◽  
pp. 481-486 ◽  
Author(s):  
B. Freedman ◽  
P. Smolensky ◽  
D. Weingarten

2018 ◽  
Vol 175 ◽  
pp. 02008 ◽  
Author(s):  
Guido Cossu ◽  
Peter Boyle ◽  
Norman Christ ◽  
Chulwoo Jung ◽  
Andreas Jüttner ◽  
...  

We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC) algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.


2004 ◽  
Vol 859 ◽  
Author(s):  
Christoph A. Haselwandter ◽  
Dimitri D. Vvedensky

ABSTRACTLattice Langevin equations are derived from the rules of lattice growth models. These provide an exact mathematical description that is suitable for direct analysis, such as the passage to the continuum limit, as well as a computational alternative to kinetic Monte Carlo simulations. This approach is applied to ballistic deposition and a model for conditional deposition, both of which yield the Kardar–Parisi– Zhang equation in the continuum limit, and a model of strain relaxation during heteroepitaxy.


1989 ◽  
Vol 04 (05) ◽  
pp. 475-481 ◽  
Author(s):  
HIROSHI KOIBUCHI ◽  
MITSURU YAMADA

The O(3) σ-model is studied numerically on a curved random surface, which is constructed from a flat random lattice by the change of each link length. The pair correlation, the specific heat and the magnetic susceptibility are calculated. It is shown that the continuum limit of the model can be obtained when the curvature is reasonably small.


2008 ◽  
Vol 19 (09) ◽  
pp. 1459-1475 ◽  
Author(s):  
GEORGE A. BAKER ◽  
JAMES P. HAGUE

We propose a model that extends the binary "united we stand, divided we fall" opinion dynamics of Sznajd-Weron to handle continuous and multi-state discrete opinions on a linear chain. Disagreement dynamics are often ignored in continuous extensions of the binary rules, so we make the most symmetric continuum extension of the binary model that can treat the consequences of agreement (debate) and disagreement (confrontation) within a population of agents. We use the continuum extension as an opportunity to develop rules for persistence of opinion (memory). Rules governing the propagation of centrist views are also examined. Monte Carlo simulations are carried out. We find that both memory effects and the type of centrist significantly modify the variance of average opinions in the large timescale limits of the models. Finally, we describe the limit of applicability for Sznajd-Weron's model of binary opinions as the continuum limit is approached. By comparing Monte Carlo results and long time-step limits, we find that the opinion dynamics of binary models are significantly different to those where agents are permitted more than 3 opinions.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
David Albandea ◽  
Pilar Hernández ◽  
Alberto Ramos ◽  
Fernando Romero-López

AbstractWe propose a modification of the Hybrid Monte Carlo (HMC) algorithm that overcomes the topological freezing of a two-dimensional U(1) gauge theory with and without fermion content. This algorithm includes reversible jumps between topological sectors – winding steps – combined with standard HMC steps. The full algorithm is referred to as winding HMC (wHMC), and it shows an improved behaviour of the autocorrelation time towards the continuum limit. We find excellent agreement between the wHMC estimates of the plaquette and topological susceptibility and the analytical predictions in the U(1) pure gauge theory, which are known even at finite $$\beta $$ β . We also study the expectation values in fixed topological sectors using both HMC and wHMC, with and without fermions. Even when topology is frozen in HMC – leading to significant deviations in topological as well as non-topological quantities – the two algorithms agree on the fixed-topology averages. Finally, we briefly compare the wHMC algorithm results to those obtained with master-field simulations of size $$L\sim 8 \times 10^3$$ L ∼ 8 × 10 3 .


2005 ◽  
Vol 5 (3) ◽  
pp. 223-241
Author(s):  
A. Carpio ◽  
G. Duro

AbstractUnstable growth phenomena in spatially discrete wave equations are studied. We characterize sets of initial states leading to instability and collapse and obtain analytical predictions for the blow-up time. The theoretical predictions are con- trasted with the numerical solutions computed by a variety of schemes. The behavior of the systems in the continuum limit and the impact of discreteness and friction are discussed.


2021 ◽  
pp. 1-14
Author(s):  
Tiffany M. Shader ◽  
Theodore P. Beauchaine

Abstract Growth mixture modeling (GMM) and its variants, which group individuals based on similar longitudinal growth trajectories, are quite popular in developmental and clinical science. However, research addressing the validity of GMM-identified latent subgroupings is limited. This Monte Carlo simulation tests the efficiency of GMM in identifying known subgroups (k = 1–4) across various combinations of distributional characteristics, including skew, kurtosis, sample size, intercept effect size, patterns of growth (none, linear, quadratic, exponential), and proportions of observations within each group. In total, 1,955 combinations of distributional parameters were examined, each with 1,000 replications (1,955,000 simulations). Using standard fit indices, GMM often identified the wrong number of groups. When one group was simulated with varying skew and kurtosis, GMM often identified multiple groups. When two groups were simulated, GMM performed well only when one group had steep growth (whether linear, quadratic, or exponential). When three to four groups were simulated, GMM was effective primarily when intercept effect sizes and sample sizes were large, an uncommon state of affairs in real-world applications. When conditions were less ideal, GMM often underestimated the correct number of groups when the true number was between two and four. Results suggest caution in interpreting GMM results, which sometimes get reified in the literature.


Sign in / Sign up

Export Citation Format

Share Document