scholarly journals Electronic transport characteristics of a single wall carbon nanotube field effect transistor wrapped with deoxyribonucleic acid molecules

2008 ◽  
Vol 109 ◽  
pp. 012015 ◽  
Author(s):  
J S Hwang ◽  
H T Kim ◽  
H K Kim ◽  
M H Son ◽  
J H Oh ◽  
...  
2011 ◽  
Vol 8 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Mohammad Taghi Ahmadi ◽  
Razali Ismail ◽  
Zaharah Johari ◽  
Jeffrey Frank Webb

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yohei Yomogida ◽  
Kanako Horiuchi ◽  
Ryotaro Okada ◽  
Hideki Kawai ◽  
Yota Ichinose ◽  
...  

AbstractThe presence of hopping carriers and grain boundaries can sometimes lead to anomalous carrier types and density overestimation in Hall-effect measurements. Previous Hall-effect studies on carbon nanotube films reported unreasonably large carrier densities without independent assessments of the carrier types and densities. Here, we have systematically investigated the validity of Hall-effect results for a series of metallic, semiconducting, and metal–semiconductor-mixed single-wall carbon nanotube films. With carrier densities controlled through applied gate voltages, we were able to observe the Hall effect both in the n- and p-type regions, detecting opposite signs in the Hall coefficient. By comparing the obtained carrier types and densities against values derived from simultaneous field-effect-transistor measurements, we found that, while the Hall carrier types were always correct, the Hall carrier densities were overestimated by up to four orders of magnitude. This significant overestimation indicates that thin films of one-dimensional SWCNTs are quite different from conventional hopping transport systems.


2010 ◽  
Vol 139-141 ◽  
pp. 1550-1553 ◽  
Author(s):  
Ke Xu ◽  
Cheng Dong Wu ◽  
Xiao Jun Tian ◽  
Ying Zhang ◽  
Zai Li Dong

Single-wall carbon nanotubes are candidates for a number of building blocks in nanoscale electronics. With respect to the assembly of carbon nanotube field effect transistor, the dielectrophoresis technology is adopted, which assembles SWCNTs between the micro-electrodes, SWCNTs are affected by the electrophoretic force which is carried out by the related theoretical analysis in a nonuniform electric field. The driving electric field of dielectrophoresis is simulated by the comsol software. According to the simulation results, a number of the experiments are done. It turns out that the required experimental parameters of the efficient assembly of SWCNT were obtained. AFM scanning and electrical properties of SWCNTs show that the method can achieve the effective assembly of carbon nanotube field effect transistor. SWCNTs are driven in the microelectrode gap, having a good arrangement of uniform orientation and assembly results, and proportional to the arrangement density along the electrode width direction and the duration of DEP. Meanwhile, it also provides an effective method of assembly and manufacture for other one-dimensional nanomaterials assembly of nanoelectronic devices.


2021 ◽  
Author(s):  
Yohei Yomogida ◽  
Kanako Horiuchi ◽  
Ryotaro Okada ◽  
Hideki Kawai ◽  
Yota Ichinose ◽  
...  

Abstract The presence of hopping carriers and grain boundaries can sometimes lead to anomalous carrier types and density overestimation in Hall-effect measurements. Previous Hall-effect studies on carbon nanotube films reported unreasonably large carrier densities without independent assessments of the carrier types and densities. Here, we have systematically investigated the validity of Hall-effect results for a series of metallic, semiconducting, and metal-semiconductor-mixed single-wall carbon nanotube films. With carrier densities controlled through applied gate voltages, we were able to observe the Hall effect both in the n- and p-type regions, detecting opposite signs in the Hall coefficient. By comparing the obtained carrier types and densities against values derived from simultaneous field-effect-transistor measurements, we found that, while the Hall carrier types were always correct, the Hall carrier densities were overestimated by up to four orders of magnitude. This significant overestimation indicates that thin films of one-dimensional SWCNTs are quite different from conventional hopping transport systems.


Sign in / Sign up

Export Citation Format

Share Document