scholarly journals Numerical study on an area of regular polygon as a concept of limit approach for unit circle using line integrals with MS Excel

2019 ◽  
Vol 1180 ◽  
pp. 012010
Author(s):  
Beni Utomo
1970 ◽  
Vol 40 (3) ◽  
pp. 595-602 ◽  
Author(s):  
G. S. Murty ◽  
K. Sankara Rao

The dynamical behaviour of a system of parallel line vortices in an inviscid fluid is studied numerically. The initial configuration of the system is assumed to be such that the points of intersection of the line vortices with a plane normal to the vorticity form a regular polygon. The numerical experiments show that the vortex polygon is rearranged due to non-linear interactions among the line vortices in such a way as to produce a more or less uniform distribution of vortices inside the fluid with an approximately constant mean separation. The average angular velocity of the rotation of the vortex lines about the instantaneous centroid of the vortex system remains approximately constant. These results agree with the conjecture of Raja Gopal (1964). The results may prove to be of some value in a macroscopic model of liquid helium based on hydrodynamical principles.


2020 ◽  
Vol 164 ◽  
pp. 02013
Author(s):  
Mikhail Ovchintsev

The linear best method for approximating the second derivatives of Hardy class functions defined in the unit circle at zero in accordance with the information about their values in a finite number of points forming a regular polygon is found. The paper is divided into three sections. The first contains the necessary concepts and results from the work of K.Yu. Osipenko. It also recalls some results obtained by S. Ya. Havinson and other authors. In the second section, the error of the best method is calculated, and the corresponding extremal functions are written out. The third proves that the linear best approximation method is unique, and its coefficients are calculated.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2013 ◽  
Author(s):  
Pancheewa Benjamasutin ◽  
◽  
Ponthong Rijana ◽  
Phongchayont Srisuwan ◽  
Aussadavut Dumrongsiri

2013 ◽  
Author(s):  
Artchapong Hassametto ◽  
Preerawadee Chaiboontun ◽  
Chattraporn Prajuabwan ◽  
Laphatrada Khammuang ◽  
Aussadavut Dumrongsiri

Sign in / Sign up

Export Citation Format

Share Document