scholarly journals Two-dimensional stationary flow of two immiscible fluids in a cylinder taking into account the internal energy of the interface

2019 ◽  
Vol 1268 ◽  
pp. 012045
Author(s):  
V K Andreev ◽  
E P Magdenko
1991 ◽  
Vol 230 ◽  
pp. 231-243 ◽  
Author(s):  
Walter Craig ◽  
Peter Sternberg

This article considers certain two-dimensional, irrotational, steady flows in fluid regions of finite depth and infinite horizontal extent. Geometrical information about these flows and their singularities is obtained, using a variant of a classical comparison principle. The results are applied to three types of problems: (i) supercritical solitary waves carrying planing surfaces or surfboards, (ii) supercritical flows past ship hulls and (iii) supercritical interfacial solitary waves in systems consisting of two immiscible fluids.


2020 ◽  
Vol 15 ◽  

Mixing processes in the turbulent two-phase jet confined at some distance from the nozzle aremodeled and examined. Many natural and technical phenomena deal with the turbulent mixing and heattransfer in the jet of mutually immiscible liquids, which represent an important class of the modern multiphasesystems dynamics. The differential equations for axially symmetrical two-dimensional stationary flow and theintegral correlations in a cylindrical coordinate system are considered for the free heterogeneous jet confined atits initial or ground part in the cylindrical channel. Algorithm and the results obtained may be of interest for theresearch and industrial tasks, where the calculations of the turbulent mixing and heat transfer in multiphase jetdevices are of importance.


2018 ◽  
Vol 8 (9) ◽  
pp. 1497 ◽  
Author(s):  
Qingqing Gu ◽  
Haihu Liu ◽  
Yonghao Zhang

Understanding the dynamic displacement of immiscible fluids in porous media is important for carbon dioxide injection and storage, enhanced oil recovery, and non-aqueous phase liquid contamination of groundwater. However, the process is not well understood at the pore scale. This work therefore focuses on the effects of interfacial tension, wettability, and the viscosity ratio on displacement of one fluid by another immiscible fluid in a two-dimensional (2D) Berea sandstone using the colour gradient lattice Boltzmann model with a modified implementation of the wetting boundary condition. Through invasion of the wetting phase into the porous matrix, it is observed that the viscosity ratio plays an important role in the non-wetting phase recovery. At the viscosity ratio ( λ ) of unity, the saturation of the wetting fluid is highest, and it linearly increases with time. The displacing fluid saturation reduces drastically when λ increases to 20; however, when λ is beyond 20, the reduction becomes less significant for both imbibition and drainage. The front of the bottom fingers is finally halted at a position near the inlet as the viscosity ratio increases to 10. Increasing the interfacial tension generally results in higher saturation of the wetting fluid. Finally, the contact angle is found to have a limited effect on the efficiency of displacement in the 2D Berea sandstone.


Author(s):  
M. R. Davidson

AbstractA numerical procedure for calculating the evolution of a periodic interface between two immiscible fluids flowing in a two-dimensional porous medium or Hele-Shaw cell is described. The motion of the interface is determined in a stepwise manner with its new velocity at exach time step being derived as a numerical solution of a boundary integral equation. Attention is focused on the case of unstable displacement charaterised physically by the “fingering” of the interface and computationally by the growth of numerical errors regardless of the numerical method employed. Here the growth of such error is reduced and the usable part of the calculation extended to finite amplitudes. Numerical results are compared with an exact “finger” solution and the calculated behaviour of an initial sinusoidal displacement, as a function of interfacial tension, initial amplitude and wavelength, is discussed.


2006 ◽  
Vol 04 (01) ◽  
pp. 31-60 ◽  
Author(s):  
KARIM TRABELSI

In this paper, we derive nonlinearly elastic membrane plate models for hyperelastic incompressible materials using Γ-convergence arguments. We obtain an integral representation of the limit two-dimensional internal energy owing to a result of singular functionals relaxation due to Ben Belgacem [6].


1997 ◽  
Vol 08 (04) ◽  
pp. 909-918 ◽  
Author(s):  
Keir E. Novik ◽  
Peter V. Coveney

We investigate the domain growth and phase separation of two-dimensional binary immiscible fluid systems using dissipative particle dynamics. Our results are compared with similar simulations using other techniques, and we conclude that dissipative particle dynamics is a promising method for simulating these systems.


Sign in / Sign up

Export Citation Format

Share Document