scholarly journals Study on Oxygenation Performance of Solid Jet Aerator having Circular Opening corresponding to Variable Jet Length and Flow Area

2020 ◽  
Vol 1531 ◽  
pp. 012117
Author(s):  
Bishnu Kant Shukla ◽  
Pushpendra Kumar Sharma ◽  
Arun Goel
2013 ◽  
Vol 55 (10) ◽  
pp. 743-747
Author(s):  
Branko Staniša ◽  
Lidija Ćurković ◽  
Zdravko Schauperl
Keyword(s):  

Author(s):  
Chol-Bom Kim ◽  
Chuan Leng ◽  
Xiao-Dong Wang ◽  
Tian-Hu Wang ◽  
Wei-Mon Yan

Author(s):  
Jeremy C. Bailey ◽  
Ronald S. Bunker

Heat transfer and friction coefficients have been measured within a rectangular passage of aspect ratio 0.4 containing 45-degree staggered turbulators of very high blockage. Using a constant pitch-to-height ratio of 10 for all geometries, turbulator height-to-channel hydraulic diameter ratios from 0.193 to 0.333 were investigated. This range of e/D creates actual channel blockage ratios e/H from 0.275 to 0.475, presenting significant flow area restrictions. A liquid crystal test technique is used to obtain both detailed heat transfer behavior on the surfaces between turbulators, as well as averaged fully developed heat transfer coefficients. Reynolds numbers from 20000 to 100000 were tested. Nusselt number enhancements of up to 3.6 were obtained over that of a smooth channel, with friction coefficient enhancements of as much as 65. In contrast to low-blockage turbulated channels, the 45-degree turbulated Nu is found to be lower than that at 90-degree orientation, given very similar e/D and e/H values.


2003 ◽  
Vol 125 (5) ◽  
pp. 843-850 ◽  
Author(s):  
G. Roy ◽  
D. Vo-Ngoc ◽  
D. N. Nguyen ◽  
P. Florent

The application of pneumatic metrology to control dimensional accuracy on machined parts is based on the measurement of gas flow resistance through a restricted section formed by a jet orifice placed at a small distance away from a machined surface. The backpressure, which is sensed and indicated by a pressure gauge, is calibrated to measure dimensional variations. It has been found that in some typical industrial applications, the nozzles are subject to fouling, e.g., dirt and oil deposits accumulate on their frontal areas, thus requiring more frequent calibration of the apparatus for reliable service. In this paper, a numerical and experimental analysis of the flow behavior in the region between an injection nozzle and a flat surface is presented. The analysis is based on the steady-state axisymmetric flow of an incompressible fluid. The governing equations, coupled with the appropriate boundary conditions, are solved using the SIMPLER algorithm. Results have shown that for the standard nozzle geometry used in industrial applications, an annular low-pressure separated flow area was found to exist near the frontal surface of the nozzle. The existence of this area is believed to be the cause of the nozzle fouling problem. A study of various alternate nozzle geometries has shown that this low-pressure recirculation area can be eliminated quite readily. Well-designed chamfered, rounded, and reduced frontal area nozzles have all reduced or eliminated the separated recirculation flow area. It has been noted, however, that rounded nozzles may adversely cause a reduction in apparatus sensitivity.


2009 ◽  
Vol 4 (2) ◽  
pp. 133-143 ◽  
Author(s):  
M. Suneel Kumar ◽  
P. Alagusundaramoorthy ◽  
R. Sundaravadivelu

2021 ◽  
Author(s):  
Mauricio Espinosa ◽  
Jairo Leal ◽  
Ron Zbitowsky ◽  
Eduardo Pacheco

Abstract This paper highlights the first successful application of a field deployment of a high-temperature (HT) downhole shut-in tool (DHSIT) in multistage fracturing completions (MSF) producing retrograde gas condensate and from sour carbonate reservoirs. Many gas operators and service providers have made various attempts in the past to evaluate the long-term benefit of MSF completions while deploying DHSIT devices but have achieved only limited success (Ref. 1 and 2). During such deployments, many challenges and difficulties were faced in the attempt to deploy and retrieve those tools as well as to complete sound data interpretation to successfully identify both reservoir, stimulation, and downhole productivity parameters, and especially when having a combination of both heterogeneous rocks having retrograde gas pressure-volume-temperature (PVT) complexities. Therefore, a robust design of a DHSIT was needed to accurately shut-in the well, hold differential pressure, capture downhole pressure transient data, and thereby identify acid fracture design/conductivity, evaluate total KH, reduce wellbore storage effects, properly evaluate transient pressure effects, and then obtain a better understanding of frac geometry, reservoir parameters, and geologic uncertainties. Several aspects were taken into consideration for overcoming those challenges when preparing the DHSIT tool design including but not limited to proper metallurgy selection, enough gas flow area, impact on well drawdown, tool differential pressure, proper elastomer selection, shut-in time programming, internal completion diameter, and battery operation life and temperature. This paper is based on the first successful deployment and retrieval of the DHSIT in a 4-½" MSF sour carbonate gas well. The trial proved that all design considerations were important and took into consideration all well parameters. This project confirmed that DHSIT devices can successfully withstand the challenges of operating in sour carbonate MSF gas wells as well as minimize operational risk. This successful trial demonstrates the value of utilizing the DHSIT, and confirms more tangible values for wellbore conductivity post stimulation. All this was achieved by the proper metallurgy selection, maximizing gas flow area, minimizing the impact on well drawdown, and reducing well shut-in time and deferred gas production. Proper battery selection and elastomer design also enabled the tool to be operated at temperatures as high as 350 °F. The case study includes the detailed analysis of deployment and retrieval lessons learned, and includes equalization procedures, which added to the complexity of the operation. The paper captures all engineering concepts, tool design, setting packer mechanism, deployment procedures, and tool equalization and retrieval along with data evaluation and interpretation. In addition to lessons learned based on the field trial, various recommendations will be presented to minimize operational risk, optimize shut-in time and maximize data quality and interpretation. Utilizing the lessons learned and the developed procedures presented in this paper will allow for the expansion of this technology to different gas well types and formations as well as standardize use to proper evaluate the value of future MSF completions and stimulation designs.


Bauingenieur ◽  
2021 ◽  
Vol 96 (04) ◽  
pp. 114-120
Author(s):  
Zheng Li ◽  
Jörgen Robra

Der Wellstegträger ist ein relativ neuartiges Bauteil mit einem breiten Anwendungsbereich im Stahlbau. Aufgrund des dünnen Stegs des Trägers ergibt sich eine signifikante Gewichtsreduzierung im Vergleich zu gewalzten oder geschweißten I-Profilen. Der Wellstegträger kann mit dünnerem Steg eine größere Steifigkeit aus der Ebene erzie- len, so dass das Beulen des Stegs durch die Wellung verhindert wird. Um eine Erhöhung der Gebäudehöhe zu vermeiden, können Öffnungen für Rohrleitungen in gewellten Stahlträgern eine kostengünstige Lösung darstellen. Dennoch reduzieren die Öffnungen im Wellsteg die Gesamtsteifigkeit und Tragfähigkeit des Trägers. Um das mechanische Verhalten von Wellstegträgern mit kreisförmigen Öffnungen und entsprechendem Öffnungskranz zu untersuchen, wurden drei Versuchskörper durch Bauteilversuche getestet. Die Finite-Elemente-Analyse wurde mit Abaqus durchgeführt. Die Simulationsergebnisse unter Berücksichtigung der geometrischen Imperfektion stimmen gut mit den Experimenten überein. Die Ergebnisse zeigen, dass der Öffnungskranz die Tragfähigkeit des Wellstegträgers mit Öffnungen wirksam verbessern kann. Anhand der Parameterstudie erhöht die Zunahme der Kranzdicke die Empfindlichkeit der geometrischen Imperfektion. Außerdem kann die Tragfähigkeit des Wellstegträgers mit kreisförmigen Öffnungskranz mit einem einfachen Rechenmodell für die Handrechnung auf der sicheren Seite liegend abgeschätzt werden.


Sign in / Sign up

Export Citation Format

Share Document