scholarly journals Topological Lightweight Optimization Simulation on EMU Luggage Rack Bracket

2020 ◽  
Vol 1634 ◽  
pp. 012161
Author(s):  
Linfeng Sun ◽  
Bingsong Wang
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jing Gao ◽  
Shizhen Xie ◽  
Xiantang Zhang ◽  
Hongli Wang ◽  
Wenle Gao ◽  
...  

With the decrease and depletion of shallow coal resources, the depth of mining is increasing. The mechanism of high crustal stress blasting is not clear, and the effect of crustal stress on blasting effect is obvious. The law of the differential detonation is similar without crustal stress. The crustal stress of rock masses increases linearly with the increase in excavation depth, and the influence of crustal stress on blasting effect is great. In order to study the rock-breaking process of complex differential blasting under deep high crustal stress, the instantaneous detonation of each model and the priority detonation of the central hole are numerically simulated. The evolution law of the blasting crack and the method of optimizing blasting effect by differential blasting and increasing the aperture of the priority detonation hole under high crustal stress are put forward. The authors proposed a study on the 2D optimization simulation of complex five-hole cutting blasting under different lateral pressure coefficients of 400 m and 800 m with software ANSYS/LS-DYNA and analyzed the evolution rules of blasting cracks and lateral pressure coefficients. The results show that setting delayed detonation and hole diameter and optimizing blasthole spacing can optimize the rock-breaking effect under high crustal stress and different lateral pressure coefficients.


2019 ◽  
Vol 34 (3) ◽  
pp. 211-221
Author(s):  
Zafar Koreshi ◽  
Hamda Khan ◽  
Muhammad Yaqub

Seeking optimal material distribution in a nuclear system to maximize a response function of interest has been a subject of considerable interest in nuclear engineering. Examples are the optimal fuel distribution in a nuclear reactor core to achieve uniform burnup using minimum critical mass and the use of composite materials with an optimal mix of constituent elements in detection systems and radiation shielding. For such studies, variational methods have been found to be useful but, they have been used for standalone analyses often restricted to idealized models, while more elaborate design studies have required computationally expensive Monte Carlo simulations ill-suited to iterative schemes for optimization. Such an inherent disadvantage of Monte Carlo methods changed with the development of perturbation algorithms but, their efficiency is still dependent on the reference configuration for which a hit-and-trial approach is often used. In the first illustrative example, this paper explores the computational speedup for a bare cylindrical reactor core, achievable by using a variational result to enhance the computational efficiency of Monte Carlo design optimization simulation. In the second example, the effect of non-uniform material density in a fixed-source problem, applicable to optimal moderator and radiation shielding, is presented. While applications of this work are numerous, the objective of this paper is to present preliminary variational results as inputs to elaborate stochastic optimization by Monte Carlo simulation for large and realistic systems.


2018 ◽  
Vol 189 ◽  
pp. 02001
Author(s):  
Yinghong Zuo ◽  
Jinhui Zhu ◽  
Shengli Niu ◽  
Honggang Xie ◽  
Peng Shang

This study aims to get the optimization neutron shielding design of iron/polyethylene combined shield structure. The neutron transmission coefficient with various energies for different thickness of iron and polyethylene combined shield structure were calculated by using Monte Carlo method. The simulation results show that the optimization effect of iron/polyethylene combined shield is not obvious when the neutron energy is low or the shield is thin, there is an optimal thickness ratio of iron to polyethylene adopted to get the best neutron shielding performance when the energy of neutron source is above 2 MeV and the total thickness of combined shielding structure is more than 20 cm. The optimal thickness ratio of iron to polyethylene increases with the increasing energy of neutron source; with the increasing of neutron source energy ranging from 4 MeV to 14 MeV, the optimal thickness ratio of iron to polyethylene trends from 0.11 to nearly 1.6.


Sign in / Sign up

Export Citation Format

Share Document