scholarly journals Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

2009 ◽  
Vol 167 ◽  
pp. 012039 ◽  
Author(s):  
E Vigueras-Santiago ◽  
S Hernández-López ◽  
M A Camacho-López ◽  
O Lara-Sanjuan
2014 ◽  
Vol 97 ◽  
pp. 34-40 ◽  
Author(s):  
Shaodi Zheng ◽  
Jie Deng ◽  
Luqiong Yang ◽  
Danqi Ren ◽  
Shinlin Huang ◽  
...  

2018 ◽  
Vol 72 (7) ◽  
pp. 1057-1068 ◽  
Author(s):  
Shawn C. Averett ◽  
Steven K. Stanley ◽  
Joshua J. Hanson ◽  
Stacey J. Smith ◽  
James E. Patterson

High-density polyethylene (HDPE) has been extensively studied, both as a model for semi-crystalline polymers and because of its own industrial utility. During cold drawing, crystalline regions of HDPE are known to break up and align with the direction of tensile load. Structural changes due to deformation should also manifest at the surface of the polymer, but until now, a detailed molecular understanding of how the surface responds to mechanical deformation has been lacking. This work establishes a precedent for using vibrational sum-frequency generation (VSFG) spectroscopy to investigate changes in the molecular-level structure of the surface of HDPE after cold drawing. X-ray diffraction (XRD) was used to confirm that the observed surface behavior corresponds to the expected bulk response. Before tensile loading, the VSFG spectra indicate that there is significant variability in the surface structure and tilt of the methylene groups away from the surface normal. After deformation, the VSFG spectroscopic signatures are notably different. These changes suggest that hydrocarbon chains at the surface of visibly necked HDPE are aligned with the direction of loading, while the associated methylene groups are oriented with the local C2 v symmetry axis roughly parallel to the surface normal. Small amounts of unaltered material are also found at the surface of necked HDPE, with the relative amount of unaltered material decreasing as the amount of deformation increases. Aspects of the nonresonant SFG response in the transition zone between necked and undeformed polymer provide additional insight into the deformation process and may provide the first indication of mechanical deformation. Nonlinear surface spectroscopy can thus be used as a noninvasive and nondestructive tool to probe the stress history of a HPDE sample in situations where X-ray techniques are not available or not applicable. Vibrational sum-frequency generation thus has great potential as a platform for material state awareness (MSA) and should be considered as part of a broader suite of tools for such applications.


2020 ◽  
Vol 869 ◽  
pp. 229-233
Author(s):  
Timur A. Borukaev ◽  
Abubekir Kh. Shaov ◽  
Raisa D. Archakova ◽  
Zakhirat Kh. Sultigova

The influence of carbon black on the deformation-strength properties of high density polyethylene is considered. It was found that the deformation-strength properties of the polymer matrix change over the entire range of the filler content. The amount of carbon black that can be introduced into high-density polyethylene and obtained a composite material with the optimal combination of stiffness, strength and ductility is established. It was shown that the change in the deformation-strength properties of composites is due to the behavior and influence of carbon black particles on the structure of the polymer matrix.


2018 ◽  
Vol 52 (20) ◽  
pp. 2719-2727 ◽  
Author(s):  
Alper Uysal

In this study, surface roughness and burr were investigated in drilling of pure and carbon black reinforced high-density polyethylene at three cutting speeds and feeds with three drill point angles. The measurement results of surface roughness of drilled holes were evaluated by Taguchi and analysis of variance statistical methods to specify the optimal drilling parameters and the effects of selected drilling parameters. According to the results, lower surface roughness and fewer burrs were obtained in drilling at high cutting speed and low feed with drill tools having small point angle and it was specified that the carbon black reinforcement reduced the surface roughness. Additionally, the optimal drilling parameters were determined as drill point angle of 80°, feed of 0.1 mm/rev and cutting speed of 120 m/min and the most effective parameter was found as drill point angle and the least effective parameter was found as feed.


2010 ◽  
Vol 123-125 ◽  
pp. 59-62 ◽  
Author(s):  
T. Jeevananda ◽  
O.G. Palanna ◽  
Joong Hee Lee ◽  
Siddaramaiah ◽  
C. Ranganathaiah

The present study investigates the effect of the carboxylated multi-walled carbon nanotube (0~3 wt %) content on the electrical and thermal properties of high density polyethylene/carbon black/carboxylated multi-walled carbon nanotube (HDPE/CB/c-MWNT) hybrid nanocomposites. The room temperature electrical resistivity and positive temperature coefficient (PTC) intensity of the nanocomposites significantly improved with the addition of c-MWNT. However, the heat of fusion decreases as the amount of c-MWNT increases. Further, the microstructural parameters such as the fractional free volume (Fv) and free volume hole size (Vf) of the nanocomposites shows appreciable changes around the percolation threshold. Secondly, the PALS results seem to correlate well with the electrical and thermal properties of the composites.


2011 ◽  
Vol 374-377 ◽  
pp. 1409-1413
Author(s):  
Xiao Wei Wu ◽  
Dong Wei Cao ◽  
Hai Yan Zhang

In order to avoid the phase separation of the high density-polyethylene modified asphalt, a composite material modifier was prepared in the melt blending process with High density-Polyethylene (HDPE) and Styrene-butadiene-styrene (SBS) and a filler of Carbon black (CB). The storage stability of composite material (HDPE-SBS) modified asphalt was investigated by hot storage stability test and optical microscopic observation. The storage-stable mechanism of HDPE-SBS modified asphalt was analyzed also. The experimental results indicated that the difference of the softening point after storing at high temperature for 48h was very small. Micrographs of HDPE-SBS modified asphalt demonstrated that HDPE-SBS composite modifier particles dispersed uniformly and compactly and there were no obvious phase separations in the modified asphalt within a certain CB content range.


Sign in / Sign up

Export Citation Format

Share Document