scholarly journals DenseNet-ResNet-LSTM model for modulation recognition of communication signal

2020 ◽  
Vol 1693 ◽  
pp. 012150
Author(s):  
ZongYu Li ◽  
YanDong Zhang
2014 ◽  
Vol 608-609 ◽  
pp. 459-467 ◽  
Author(s):  
Xiao Yu Gu

The paper researches a recognition algorithm of modulation signal and modulation modes. The modulation modes to be recognized include 2ASK, 2FSK, 2PSK, 4ASK, 4FSK and 4PSK modulation. There are two methods recognizing modulation modes of digital signal, method based on decision theory and pattern-recognition method based on feature extraction. The method based on decision theory is not suitable for recognition with multiple modulation modes. The core of pattern recognition based on feature extraction is selection of feature parameters. So the paper uses the feature parameters with simple calculation, easy to be implemented and high recognition rate as the core. The extraction of feature parameters is based on instant feature of modulation signal after Hilbert transformation.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2302
Author(s):  
Kaiyuan Jiang ◽  
Xvan Qin ◽  
Jiawei Zhang ◽  
Aili Wang

In the noncooperation communication scenario, digital signal modulation recognition will help people to identify the communication targets and have better management over them. To solve problems such as high complexity, low accuracy and cumbersome manual extraction of features by traditional machine learning algorithms, a kind of communication signal modulation recognition model based on convolution neural network (CNN) is proposed. In this paper, a convolution neural network combines bidirectional long short-term memory (BiLSTM) with a symmetrical structure to successively extract the frequency domain features and timing features of signals and then assigns importance weights based on the attention mechanism to complete the recognition task. Seven typical digital modulation schemes including 2ASK, 4ASK, 4FSK, BPSK, QPSK, 8PSK and 64QAM are used in the simulation test, and the results show that, compared with the classical machine learning algorithm, the proposed algorithm has higher recognition accuracy at low SNR, which confirmed that the proposed modulation recognition method is effective in noncooperation communication systems.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042092
Author(s):  
Zixi Li

Abstract In the process of communication, modulation signal recognition and classification are an important part of non-cooperative communication. Automatic modulation recognition technology of communication signals based on feature extraction and pattern recognition is a key research object in the radio field. The use of neural network can achieve automatic recognition of a variety of modulation signals and achieve good results. In this method, the received signal is preprocessed to obtain the complex baseband signal including in-phase component and orthogonal component. As the data set of the input convolution neural network model, the signal further optimizes the traditional method of manual extraction of expert features for communication signal recognition, which has great limitations and low accuracy under low signal-to-noise ratio, and the simulation results are verified. The results show that the proposed method has stronger feature representation ability and competitiveness in automatic modulation recognition, and is helpful to promote the application of deep learning in the field of automatic modulation recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Lu ◽  
Zhenjiang Shi ◽  
Rijian Su

Based on the characteristics of time domain and frequency domain recognition theory, a recognition scheme is designed to complete the modulation identification of communication signals including 16 analog and digital modulations, involving 10 different eigenvalues in total. In the in-class recognition of FSK signal, feature extraction in frequency domain is carried out, and a statistical algorithm of spectral peak number is proposed. This paper presents a method to calculate the rotation degree of constellation image. By calculating the rotation degree and modifying the clustering radius, the recognition rate of QAM signal is improved significantly. Another commonly used method for calculating the rotation of constellations is based on Radon transform. Compared with the proposed algorithm, the proposed algorithm has lower computational complexity and higher accuracy under certain SNR conditions. In the modulation discriminator of the deep neural network, the spectral features and cumulative features are extracted as inputs, the modified linear elements are used as neuron activation functions, and the cross-entropy is used as loss functions. In the modulation recognitor of deep neural network, deep neural network and cyclic neural network are constructed for modulation recognition of communication signals. The neural network automatic modulation recognizer is implemented on CPU and GPU, which verifies the recognition accuracy of communication signal modulation recognizer based on neural network. The experimental results show that the communication signal modulation recognizer based on artificial neural network has good classification accuracy in both the training set and the test set.


Sign in / Sign up

Export Citation Format

Share Document