scholarly journals Numerical Study on Behaviour of Spiral Concrete Columns and Slender Concrete Filled Steel Tube (CFST) Columns against Concentric Axial Loads

2021 ◽  
Vol 1764 (1) ◽  
pp. 012147
Author(s):  
Usman Wijaya ◽  
William Sanjaya
2020 ◽  
Vol 14 (54) ◽  
pp. 317-324
Author(s):  
Ali Golsoorat Pahlaviani ◽  
Ali Mohammad Rousta ◽  
Peyman Beiranvand

Concrete-filled steel tube (CFST) columns are increasingly used in the construction of high-rise buildings which require high strength and large working space especially at lower stories. As compared to reinforced concrete columns, existence of the exterior steel tube not only bears a portion of axial load but also most importantly provides confinement to the infill concrete.with the confinement provided by the steel tube, axial strength of the infill concrete can be largely enhanced.this paper presents the investigation effect of impact load on concrete-filled steel tube columns under fire by numerical simulations using ABAQUS software.the results indicate that the CFST sections with larger confinement factor ξ=1.23 behaved in a very ductile manner under lateral impact. And the sections with smaller confinement factor ξ=0.44  generally behaved in a brittle mechanism.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shi Yan ◽  
Jinzhi Fu ◽  
Wei Sun ◽  
Baohui Qi ◽  
Fuxue Liu

A smart aggregate-based approach is proposed for the concrete compactness detection of concrete filled steel tube (CFST) columns. The piezoceramic-based smart aggregates (SAs) were embedded in the predetermined locations prior to the casting of concrete columns to establish a wave-based smart sensing system for the concrete compactness detection purpose. To evaluate the efficiency of the developed approach, six specimens of the CFST columns with the rectangular cross-section were produced by placing some artificial defects during casting of concrete for simulating various uncompacted voids such as cavities, cracks, and debond. During the test, the time reversal technology was applied to rebuild the received signals and launch the reversed signals again by SAs, to overcome the issue of the lack of the prototype. Based on the proposed nonprototype, two indices of time reversibility (TR) and symmetry (SYM) were applied to relatively evaluate the level of concrete compactness in the range of the two SAs. The experimental results show that the developed method can effectively detect the compactness of concrete in CFST columns.


2018 ◽  
Vol 878 ◽  
pp. 126-131 ◽  
Author(s):  
Anatoly L. Krishan ◽  
Elvira P. Chernyshova ◽  
Rustam R. Sabirov

New approach to creating deformation charts for concrete core and steel shell of round CFST columns is offered. For creating such charts the power resistance of short central the compressed concrete filled steel tube element is considered. At the same time two major factors are considered. First, the steel shell and the concrete core function under conditions of complex tension. Secondly, at step-by-step strengthening of axial deformations the side pressure upon concrete core and steel shell constantly changes. As a result coordinates of parametrical points of deformation charts for concrete and steel change. Such approach allows describing the real intense deformed condition of concrete filled steel tube columns more precisely.


2017 ◽  
Vol 21 (10) ◽  
pp. 1542-1552 ◽  
Author(s):  
Shiming Chen ◽  
Junming Jiang ◽  
Liangjiu Jia

An innovative beam-to-column composite joint with adapter-bracket was proposed and its behavior was investigated through finite element analysis. The special adapter-bracket is to facilitate the assembly of the steel box beam and the concrete-filled steel tube column through high-strength blind bolts. In the adapter-bracket, two endplates are welded to the beam and bolted to the column, respectively. First, two finite element models of the bolted extended endplate joint were developed in ABAQUS and validated by available experimental results. Then, based on modified models, parametric analyses were conducted to evaluate the novel joint performance, in terms of the initial stiffness, rotation capacity, moment capacity, failure mode, and joint classification. The variables included flange thickness, endplate thickness, and bolt size. Results demonstrated that the joint behavior was significantly affected by the flange thickness, the endplate-A thickness, and bolt size while slightly influenced by the endplate-B thickness. Additionally, these joints had favorable rotation and moment capacity.


Sign in / Sign up

Export Citation Format

Share Document