scholarly journals Effect of Leading Edge Profile on Cavitation Performance of Mixed Flow Impeller

2021 ◽  
Vol 1909 (1) ◽  
pp. 012018
Author(s):  
Takeshi Sano ◽  
Masamichi Iino ◽  
Satoshi Maeda
Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Di Zhu ◽  
Ran Tao ◽  
Ruofu Xiao

Mixed-flow pumps compromise large flow rate and high head in fluid transferring. Long-axis mixed-flow pumps with radial–axial “spacing” guide vanes are usually installed deeply under water and suffer strong cavitation due to strong environmental pressure drops. In this case, a strategy combining the Diffusion-Angle Integral Design method, the Genetic Algorithm, and the Computational Fluid Dynamics method was used for optimizing the mixed-flow pump impeller. The Diffusion-Angle Integral Design method was used to parameterize the leading-edge geometry. The Genetic Algorithm was used to search for the optimal sample. The Computational Fluid Dynamics method was used for predicting the cavitation performance and head–efficiency performance of all the samples. The optimization designs quickly converged and got an optimal sample. This had an increased value for the minimum pressure coefficient, especially under off-design conditions. The sudden pressure drop around the leading-edge was weakened. The cavitation performance within the 0.5–1.2 Qd flow rate range, especially within the 0.62–0.78 Qd and 1.08–1.20 Qd ranges, was improved. The head and hydraulic efficiency was numerically checked without obvious change. This provided a good reference for optimizing the cavitation or other performances of bladed pumps.


Author(s):  
Leilei Ji ◽  
Wei Li ◽  
Weidong Shi ◽  
Fei Tian ◽  
Shuo Li ◽  
...  

In order to study the effect of different numbers of impeller blades on the performance of mixed-flow pump “saddle zone”, the external characteristic test and numerical simulation of mixed-flow pumps with three different impeller blade numbers were carried out. Based on high-precision numerical prediction, the internal flow field and tip leakage flow field of mixed flow pump under design conditions and stall conditions are investigated. By studying the vorticity transport in the stall flow field, the specific location of the high loss area inside the mixed flow pump impeller with different numbers of blades is located. The research results show that the increase in the number of impeller blades improve the pump head and efficiency under design conditions. Compared to the 4-blade impeller, the head and efficiency of the 5-blade impeller are increased by 5.4% and 21.9% respectively. However, the increase in the number of blades also leads to the widening of the “saddle area” of the mixed-flow pump, which leads to the early occurrence of stall and increases the instability of the mixed-flow pump. As the mixed-flow pump enters the stall condition, the inlet of the mixed-flow pump has a spiral swirl structure near the end wall for different blade numbers, but the depth and range of the swirling flow are different due to the change in the number of blades. At the same time, the change in the number of blades also makes the flow angle at 75% span change significantly, but the flow angle at 95% span is not much different because the tip leakage flow recirculates at the leading edge. Through the analysis of the vorticity transport results in the impeller with different numbers of blades, it is found that the reasons for the increase in the values of the vorticity transport in the stall condition are mainly impacted by the swirl flow at the impeller inlet, the tip leakage flow at the leading edge and the increased unsteady flow structures.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio and blowing ratio are studied. Computational simulations are performed using the realizable k-ε turbulence model. Effectiveness obtained by CFD simulations are compared with experiments. Three leading edge profiles, including one semi-cylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semi-cylinder model, shaped holes are located at 0 degrees (stagnation line) and ± 30 degrees. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,900 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile and on turbine blade leading edge region film cooling with shaped-hole designs.


2001 ◽  
Vol 7 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Steven M. Miner

This paper presents the results of a study using a coarse grid to analyze the flow in the impeller of a mixed flow pump. A commercial computational fluid dynamics code (FLOTRAN) is used to solve the 3-D Reynolds Averaged Navier Stokes equations in a rotating cylindrical coordinate system. The standardk-εturbulence model is used. The mesh for this study uses 26,000 nodes and the model is run on a SPARCstation 20. This is in contrast to typical analyses using in excess of 100,000 nodes that are run on a super computer platform. The smaller mesh size has advantages in the design environment. Stage design parameters are, rotational speed 1185 rpm, flow coefficientφ=0.116, head coefficientψ=0.094, and specific speed 2.01 (5475 US). Results for the model include circumferentially averaged results at the leading and trailing edges of the impeller, and analysis of the flow field within the impeller passage. Circumferentially averaged results include axial and tangential velocities, static pressure, and total pressure. Within the impeller passage the static pressure and velocity results are presented on surfaces from the leading edge to the trailing edge, the hub to the shroud, and the pressure surface to the suction surface. Results of this study are consistent with the expected flow characteristics of mixed flow impellers, indicating that small CFD models can be used to evaluate impeller performance in the design environment.


Author(s):  
Mingjie Zhang ◽  
Nian Wang ◽  
Andrew F. Chen ◽  
Je-Chin Han

This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio, and blowing ratio are studied. Computational simulations are performed using the realizable k–ɛ (RKE) turbulence model. Effectiveness obtained by computational fluid dynamics (CFD) simulations is compared with experiments. Three leading edge profiles, including one semicylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semicylinder model, shaped holes are located at 0 deg (stagnation line) and ±30 deg. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,000 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile on turbine blade leading edge region film cooling with shaped hole designs.


Author(s):  
Laizuo Chen ◽  
Minguan Yang ◽  
Wei Cui ◽  
Bo Gao ◽  
Ning Zhang ◽  
...  

Abstract Cavitation is a general phenomenon in centrifugal pumps. When the inlet pressure near the leading edge of the blade is lower than the saturated pressure, cavitation would develop in the impeller. As cavitation occurs, the pump head will drop rapidly and the pump efficiency will decrease. In addition, severe vibration and noise will be induced. Cavitation performance is considered as an important factor in many industrial applications, and affected by various conditions. The canned motor pump is a special type of non-seal centrifugal pump. The pump and motor are integrated. In order to cool the motor and lubricate the bearing during the operation, a portion of fluid, called the circulating flow, is withdrawn from the impeller outlet, and then flows along the cooling circle within the motor. Finally, the circulating fluid moves through the hollow shaft and merges with the main suction flow near the impeller inlet, which can be defined as the circulating jet flow. The jet flow will alter the uniform velocity distribution at the impeller inlet as its direction is opposed to the main suction flow. Consequently, it is expected that the cavitation performance of the pump will drop drastically. It is necessary to analyze the effect of the jet at the pump inlet on the cavitation performance. In this paper, in order to illustrate the jet flow on the pump performance, a numerical simulation method is applied to depict the fluid flow field and cavitation performance of a canned motor pump. For the turbulent model, the standard k-ε turbulent model is adopted. To capture the cavitation performance of the pump, the Zwart-Gerber-Belamri cavitation model was used to investigate the steady cavitation flow through the entire flow channel. It can be seen from the numerical results that the internal jet flow formed by the coolant circulation has a significant effect on cavitation performance. At the pump inlet, the velocity field is divided into three regions: the internal jet flow region, the main-stream region, and the backflow region. The internal jet presents a typical submerged jet structure and its existence results in the non-uniform inlet flow distribution. For the jet flow, it extends to the pump inlet and exhibits an asymmetric characteristic. The static pressure near the impeller inlet with the internal jet is drastically reduced compared to the case without the internal jet structure, and a local low-pressure region occurs around the outlet of the jet nozzle. The cavitation performance of the pump with the internal jet drops obviously. At the off-design condition, the cavitation performance of the pump is seriously degraded. From quantitative data, it indicates that the NPSH3 increases by more than 1.51 times compared with that of the original impeller under design condition. The cavitation inception occurs on the suction side of the leading edge of the impeller near the hub, and then cavitation also occurs near the outlet of the jet nozzle. Finally, the cavitation occurs in the transition region between the internal jet and the main-stream flow regions. So, it is believed that the deterioration of cavitation performance is caused by the combined effect of the non-uniform flow distribution and the cavitation at the internal jet region.


Author(s):  
Katsutoshi Kobayashi ◽  
Yoshimasa Chiba

LES (Large Eddy Simulation) with a cavitation model was performed to calculate an unsteady flow for a mixed flow pump with a closed type impeller. First, the comparison between the numerical and experimental results was done to evaluate a computational accuracy. Second, the torque acting on the blade was calculated by simulation to investigate how the cavitation caused the fluctuation of torque. The absolute pressure around the leading edge on the suction side of blade surface had positive impulsive peaks in both the numerical and experimental results. The simulation showed that those peaks were caused by the cavitaion which contracted and vanished around the leading edge. The absolute pressure was predicted by simulation with −10% error. The absolute pressure around the trailing edge on the suction side of blade surface had no impulsive peaks in both the numerical and experimental results, because the absolute pressure was 100 times higher than the saturated vapor pressure. The simulation results showed that the cavitation was generated around the throat, then contracted and finally vanished. The simulated pump had five throats and cavitation behaviors such as contraction and vanishing around five throats were different from each other. For instance, the cavitations around those five throats were not vanished at the same time. When the cavitation was contracted and finally vanished, the absolute pressure on the blade surface was increased. When the cavitation was contracted around the throat located on the pressure side of blade surface, the pressure became high on the pressure side of blade surface. It caused the 1.4 times higher impulsive peak in the torque than the averaged value. On the other hand, when the cavitation was contracted around the throat located on the suction side of blade surface, the pressure became high on the suction side of blade surface. It caused the 0.4 times lower impulsive peak in the torque than the averaged value. The cavitation around the throat caused the large fluctuation in torque acting on the blade.


1960 ◽  
Vol 82 (4) ◽  
pp. 929-940 ◽  
Author(s):  
G. M. Wood ◽  
J. S. Murphy ◽  
J. Farquhar

A mixed flow impeller design was tested with six, five, and four vanes in a closed water loop to study the effects of cavitation on hydraulic performance and the results were compared with the work of other investigators. Two idealized flow models for incipient cavitation were derived to illustrate limits of cavitation design. It was found that both vane blockage and solidity effects are important when designing for optimum cavitation performance. Data showing incidence and speed effects plus the tip static pressure profiles in cavitating and noncavitating flow are also presented.


Sign in / Sign up

Export Citation Format

Share Document