scholarly journals Short-term Passenger Flow Forecast of Urban Subway Transportation Based on Deep Learning Methods

2021 ◽  
Vol 1915 (2) ◽  
pp. 022064
Author(s):  
Yueyan Lyu
Smart Cities ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 371-387 ◽  
Author(s):  
Zhi Xiong ◽  
Jianchun Zheng ◽  
Dunjiang Song ◽  
Shaobo Zhong ◽  
Quanyi Huang

The rapid development of urban rail transit brings high efficiency and convenience. At the same time, the increasing passenger flow also remarkably increases the risk of emergencies such as passenger stampedes. The accurate and real-time prediction of dynamic passenger flow is of great significance to the daily operation safety management, emergency prevention, and dispatch of urban rail transit systems. Two deep learning neural networks, a long short-term memory neural network (LSTM NN) and a convolutional neural network (CNN), were used to predict an urban rail transit passenger flow time series and spatiotemporal series, respectively. The experiments were carried out through the passenger flow of Beijing metro stations and lines, and the prediction results of the deep learning methods were compared with several traditional linear models including autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), and space–time autoregressive integrated moving average (STARIMA). It was shown that the LSTM NN and CNN could better capture the time or spatiotemporal features of the urban rail transit passenger flow and obtain accurate results for the long-term and short-term prediction of passenger flow. The deep learning methods also have strong data adaptability and robustness, and they are more ideal for predicting the passenger flow of stations during peaks and the passenger flow of lines during holidays.


Author(s):  
Xiaoshuang Li ◽  
Ziyang Chen ◽  
Fenghua Zhu ◽  
Wei Chang ◽  
Chang Tan ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2692 ◽  
Author(s):  
Juncheng Zhu ◽  
Zhile Yang ◽  
Monjur Mourshed ◽  
Yuanjun Guo ◽  
Yimin Zhou ◽  
...  

Load forecasting is one of the major challenges of power system operation and is crucial to the effective scheduling for economic dispatch at multiple time scales. Numerous load forecasting methods have been proposed for household and commercial demand, as well as for loads at various nodes in a power grid. However, compared with conventional loads, the uncoordinated charging of the large penetration of plug-in electric vehicles is different in terms of periodicity and fluctuation, which renders current load forecasting techniques ineffective. Deep learning methods, empowered by unprecedented learning ability from extensive data, provide novel approaches for solving challenging forecasting tasks. This research proposes a comparative study of deep learning approaches to forecast the super-short-term stochastic charging load of plug-in electric vehicles. Several popular and novel deep-learning based methods have been utilized in establishing the forecasting models using minute-level real-world data of a plug-in electric vehicle charging station to compare the forecasting performance. Numerical results of twelve cases on various time steps show that deep learning methods obtain high accuracy in super-short-term plug-in electric load forecasting. Among the various deep learning approaches, the long-short-term memory method performs the best by reducing over 30% forecasting error compared with the conventional artificial neural network model.


2020 ◽  
Vol 10 (23) ◽  
pp. 8400 ◽  
Author(s):  
Abdelkader Dairi ◽  
Fouzi Harrou ◽  
Ying Sun ◽  
Sofiane Khadraoui

The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 348 ◽  
Author(s):  
Guang Yang ◽  
HwaMin Lee ◽  
Giyeol Lee

Both long- and short-term exposure to high concentrations of airborne particulate matter (PM) severely affect human health. Many countries now regulate PM concentrations. Early-warning systems based on PM concentration levels are urgently required to allow countermeasures to reduce harm and loss. Previous studies sought to establish accurate, efficient predictive models. Many machine-learning methods are used for air pollution forecasting. The long short-term memory and gated recurrent unit methods, typical deep-learning methods, reliably predict PM levels with some limitations. In this paper, the authors proposed novel hybrid models to combine the strength of two types of deep learning methods. Moreover, the authors compare hybrid deep-learning methods (convolutional neural network (CNN)—long short-term memory (LSTM) and CNN—gated recurrent unit (GRU)) with several stand-alone methods (LSTM, GRU) in terms of predicting PM concentrations in 39 stations in Seoul. Hourly air pollution data and meteorological data from January 2015 to December 2018 was used for these training models. The results of the experiment confirmed that the proposed prediction model could predict the PM concentrations for the next 7 days. Hybrid models outperformed single models in five areas selected randomly with the lowest root mean square error (RMSE) and mean absolute error (MAE) values for both PM10 and PM2.5. The error rate for PM10 prediction in Gangnam with RMSE is 1.688, and MAE is 1.161. For hybrid models, the CNN–GRU better-predicted PM10 for all stations selected, while the CNN–LSTM model performed better on predicting PM2.5.


2021 ◽  
Author(s):  
Anjana G Rajakumar ◽  
Avi Anthony ◽  
Vinoth Kumar

<p>Water demand predictions forms an integral part of sustainable management practices for water supply systems. Demand prediction models aides in water system maintenance, expansions, daily operational planning and in the development of an efficient decision support system based on predictive analytics. In recent years, it has also found wide application in real-time control and operation of water systems as well. However, short term water demand forecasting is a challenging problem owing to the frequent variations present in the urban water demand patterns. There are numerous methods available in literature that deals with water demand forecasting. These methods can be roughly classified into statistical and machine learning methods. The application of deep learning methods for forecasting water demands is an upcoming research area that has found immense traction due to its ability to provide accurate and scalable models. But there are only a few works which compare and review these methods when applied to a water demand dataset. Hence, the main objective of this work is the application of different commonly used deep learning methods for development of a short-term water demand forecast model for a real-world dataset. The algorithms studied in this work are (i) Multi-Layer Perceptron (MLP) (ii) Gated Recurrent Unit (GRU) (iii) Long Short-Term Memory (LSTM) (iv) Convolutional Neural Networks (CNN) and (v) the hybrid algorithm CNN-LSTM. Optimal supervised learning framework required for forecasting the one day ahead water demand for the study area is also identified. The dataset used in this study is from Hillsborough County, Florida, US. The water demand data was available for a duration of 10 months and the data frequency is about once per hour. These algorithms were evaluated based on the (1) Mean Absolute Percentage Error (MAPE) and (ii) Root Mean Squared Error (RMSE) values. Visual comparison of the predicted and true demand plots was also employed to check the prediction accuracy. It was observed that, the RMSE and MAPE values were minimal for the supervised learning framework that used the previous 24-hour data as input. Also, with respect to the forecast accuracy, CNN-LSTM performed better than the other methods for demand forecast, followed by MLP. MAPE values for the developed deep learning models ranged from 5% to 25%. The quantity, frequency and quality of data was also found to have substantial impact on the accuracy of the forecast models developed. In the CNN-LSTM based forecast model, the CNN component was found to effectively extract the inherent characteristics of historical water consumption data such as the trend and seasonality, while the LSTM part was able to reflect on the long-term historical process and future trend. Thus, its water demand prediction accuracy was improved compared to the other methods such as GRU, MLP, CNN and LSTM.</p>


Sign in / Sign up

Export Citation Format

Share Document