scholarly journals Short-Term Forecasting of Photovoltaic Solar Power Production Using Variational Auto-Encoder Driven Deep Learning Approach

2020 ◽  
Vol 10 (23) ◽  
pp. 8400 ◽  
Author(s):  
Abdelkader Dairi ◽  
Fouzi Harrou ◽  
Ying Sun ◽  
Sofiane Khadraoui

The accurate modeling and forecasting of the power output of photovoltaic (PV) systems are critical to efficiently managing their integration in smart grids, delivery, and storage. This paper intends to provide efficient short-term forecasting of solar power production using Variational AutoEncoder (VAE) model. Adopting the VAE-driven deep learning model is expected to improve forecasting accuracy because of its suitable performance in time-series modeling and flexible nonlinear approximation. Both single- and multi-step-ahead forecasts are investigated in this work. Data from two grid-connected plants (a 243 kW parking lot canopy array in the US and a 9 MW PV system in Algeria) are employed to show the investigated deep learning models’ performance. Specifically, the forecasting outputs of the proposed VAE-based forecasting method have been compared with seven deep learning methods, namely recurrent neural network, Long short-term memory (LSTM), Bidirectional LSTM, Convolutional LSTM network, Gated recurrent units, stacked autoencoder, and restricted Boltzmann machine, and two commonly used machine learning methods, namely logistic regression and support vector regression. The results of this investigation demonstrate the satisfying performance of deep learning techniques to forecast solar power and point out that the VAE consistently performed better than the other methods. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models.

Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 274 ◽  
Author(s):  
Andrea Maria N. C. Ribeiro ◽  
Pedro Rafael X. do Carmo ◽  
Iago Richard Rodrigues ◽  
Djamel Sadok ◽  
Theo Lynn ◽  
...  

To minimise environmental impact, to avoid regulatory penalties, and to improve competitiveness, energy-intensive manufacturing firms require accurate forecasts of their energy consumption so that precautionary and mitigation measures can be taken. Deep learning is widely touted as a superior analytical technique to traditional artificial neural networks, machine learning, and other classical time-series models due to its high dimensionality and problem-solving capabilities. Despite this, research on its application in demand-side energy forecasting is limited. We compare two benchmarks (Autoregressive Integrated Moving Average (ARIMA) and an existing manual technique used at the case site) against three deep-learning models (simple Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)) and two machine-learning models (Support Vector Regression (SVR) and Random Forest) for short-term load forecasting (STLF) using data from a Brazilian thermoplastic resin manufacturing plant. We use the grid search method to identify the best configurations for each model and then use Diebold–Mariano testing to confirm the results. The results suggests that the legacy approach used at the case site is the worst performing and that the GRU model outperformed all other models tested.


Author(s):  
Andrea MariaN.C. Ribeiro ◽  
Pedro RafaelX.do Carmo ◽  
Iago Rodrigues ◽  
Djamel Sadok ◽  
Theo Lynn ◽  
...  

To minimise environmental impact, avoid regulatory penalties, and improve competitiveness, energy-intensive manufacturing firms require accurate forecasts of their energy consumption so that precautionary and mitigation measures can be taken. Deep learning is widely touted as a superior analytical technique to traditional artificial neural networks, machine learning, and other classical time series models due to its high dimensionality and problem solving capabilities. Despite this, research on its application in demand-side energy forecasting is limited. We compare two benchmarks (Autoregressive Integrated Moving Average (ARIMA), and an existing manual technique used at the case site) against three deep learning models (simple Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)) and three machine learning models (Support Vector Regression (SVM), Random Forest, and K-Nearest Neighbors (KNN)) for short term load forecasting (STLF) using data from a Brazilian thermoplastic resin manufacturing plant. We use the grid search method to identify the best configurations for each model, and then use Diebold-Mariano testing to confirm the results. Results suggests that the legacy approach used at the case site is the worst performing, and that the GRU model outperformed all other models tested.


Author(s):  
Andrea Maria N. C. Ribeiro ◽  
Pedro Rafael X. do Carmo ◽  
Patricia Takako Endo ◽  
Pierangelo Rosati ◽  
Theo Lynn

Commercial buildings are a significant consumer of energy worldwide. Logistics facilities, and specifically warehouses, are a common building type yet under-researched in the demand-side energy forecasting literature. Warehouses have an idiosyncratic profile when compared to other commercial and industrial buildings with a significant reliance on a small number of energy systems. As such, warehouse owners and operators are increasingly entering in to energy performance contracts with energy service companies (ESCOs) to minimise environmental impact, reduce costs, and improve competitiveness. ESCOs and warehouse owners and operators require accurate forecasts of their energy consumption so that precautionary and mitigation measures can be taken. This paper explores the performance of three machine learning models (Support Vector Regression (SVR), Random Forest, and Extreme Gradient Boosting (XGBoost)), three deep learning models (Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)), and a classical time series model, Autoregressive Integrated Moving Average (ARIMA) for predicting daily energy consumption. The dataset comprises 8,040 records generated over an 11-month period from January to November 2020 from a non-refrigerated logistics facility located in Ireland. The grid search method was used to identify the best configurations for each model. The proposed XGBoost models outperform other models for both very short load forecasting (VSTLF) and short term load forecasting (STLF); the ARIMA model performed the worst.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Zhiyuan Xie ◽  
Shichang Du ◽  
Jun Lv ◽  
Yafei Deng ◽  
Shiyao Jia

Remaining Useful Life (RUL) prediction is significant in indicating the health status of the sophisticated equipment, and it requires historical data because of its complexity. The number and complexity of such environmental parameters as vibration and temperature can cause non-linear states of data, making prediction tremendously difficult. Conventional machine learning models such as support vector machine (SVM), random forest, and back propagation neural network (BPNN), however, have limited capacity to predict accurately. In this paper, a two-phase deep-learning-model attention-convolutional forget-gate recurrent network (AM-ConvFGRNET) for RUL prediction is proposed. The first phase, forget-gate convolutional recurrent network (ConvFGRNET) is proposed based on a one-dimensional analog long short-term memory (LSTM), which removes all the gates except the forget gate and uses chrono-initialized biases. The second phase is the attention mechanism, which ensures the model to extract more specific features for generating an output, compensating the drawbacks of the FGRNET that it is a black box model and improving the interpretability. The performance and effectiveness of AM-ConvFGRNET for RUL prediction is validated by comparing it with other machine learning methods and deep learning methods on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset and a dataset of ball screw experiment.


2020 ◽  
Author(s):  
John T. Halloran ◽  
Gregor Urban ◽  
David Rocke ◽  
Pierre Baldi

AbstractSemi-supervised machine learning post-processors critically improve peptide identification of shot-gun proteomics data. Such post-processors accept the peptide-spectrum matches (PSMs) and feature vectors resulting from a database search, train a machine learning classifier, and recalibrate PSMs using the trained parameters, often yielding significantly more identified peptides across q-value thresholds. However, current state-of-the-art post-processors rely on shallow machine learning methods, such as support vector machines. In contrast, the powerful training capabilities of deep learning models have displayed superior performance to shallow models in an ever-growing number of other fields. In this work, we show that deep models significantly improve the recalibration of PSMs compared to the most accurate and widely-used post-processors, such as Percolator and PeptideProphet. Furthermore, we show that deep learning is able to adaptively analyze complex datasets and features for more accurate universal post-processing, leading to both improved Prosit analysis and markedly better recalibration of recently developed database-search functions.


2021 ◽  
Author(s):  
Timo Kumpula ◽  
Janne Mäyrä ◽  
Anton Kuzmin ◽  
Arto Viinikka ◽  
Sonja Kivinen ◽  
...  

<p>Sustainable forest management increasingly highlights the maintenance of biological diversity and requires up-to-date information on the occurrence and distribution of key ecological features in forest environments. Different proxy variables indicating species richness and quality of the sites are essential for efficient detecting and monitoring forest biodiversity. European aspen (Populus tremula L.) is a minor deciduous tree species with a high importance in maintaining biodiversity in boreal forests. Large aspen trees host hundreds of species, many of them classified as threatened. However, accurate fine-scale spatial data on aspen occurrence remains scarce and incomprehensive.</p><p> </p><p>We studied detection of aspen using different remote sensing techniques in Evo, southern Finland. Our study area of 83 km<sup>2</sup> contains both managed and protected southern boreal forests characterized by Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), whereas European aspen has a relatively sparse and scattered occurrence in the area. We collected high-resolution airborne hyperspectral and airborne laser scanning data covering the whole study area and ultra-high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors from selected parts of the area. We tested the discrimination of aspen from other species at tree level using different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks).</p><p> </p><p>Airborne hyperspectral and lidar data gave excellent results with machine learning and deep learning classification methods The highest classification accuracies for aspen varied between 91-92% (F1-score). The most important wavelengths for discriminating aspen from other species included reflectance bands of red edge range (724–727 nm) and shortwave infrared (1520–1564 nm and 1684–1706 nm) (Viinikka et al. 2020; Mäyrä et al 2021). Aspen detection using RGB and multispectral data also gave good results (highest F1-score of aspen = 87%) (Kuzmin et al 2021). Different remote sensing data enabled production of a spatially explicit map of aspen occurrence in the study area. Information on aspen occurrence and abundance can significantly contribute to biodiversity management and conservation efforts in boreal forests. Our results can be further utilized in upscaling efforts aiming at aspen detection over larger geographical areas using satellite images.</p>


2020 ◽  
Vol 14 ◽  
Author(s):  
Yaqing Zhang ◽  
Jinling Chen ◽  
Jen Hong Tan ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
...  

Emotion is the human brain reacting to objective things. In real life, human emotions are complex and changeable, so research into emotion recognition is of great significance in real life applications. Recently, many deep learning and machine learning methods have been widely applied in emotion recognition based on EEG signals. However, the traditional machine learning method has a major disadvantage in that the feature extraction process is usually cumbersome, which relies heavily on human experts. Then, end-to-end deep learning methods emerged as an effective method to address this disadvantage with the help of raw signal features and time-frequency spectrums. Here, we investigated the application of several deep learning models to the research field of EEG-based emotion recognition, including deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset. Experimental results show that the CNN and CNN-LSTM models had high classification performance in EEG-based emotion recognition, and their accurate extraction rate of RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model was not as accurate as other models, but the training speed was fast. The LSTM model was not as stable as the CNN and CNN-LSTM models. Moreover, with the same number of parameters, the training speed of the LSTM was much slower and it was difficult to achieve convergence. Additional parameter comparison experiments with other models, including epoch, learning rate, and dropout probability, were also conducted in the paper. Comparison results prove that the DNN model converged to optimal with fewer epochs and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As for dropout probability, reducing the parameters by ~50% each time was appropriate.


2019 ◽  
Vol 11 (2) ◽  
pp. 196 ◽  
Author(s):  
Omid Ghorbanzadeh ◽  
Thomas Blaschke ◽  
Khalil Gholamnia ◽  
Sansar Meena ◽  
Dirk Tiede ◽  
...  

There is a growing demand for detailed and accurate landslide maps and inventories around the globe, but particularly in hazard-prone regions such as the Himalayas. Most standard mapping methods require expert knowledge, supervision and fieldwork. In this study, we use optical data from the Rapid Eye satellite and topographic factors to analyze the potential of machine learning methods, i.e., artificial neural network (ANN), support vector machines (SVM) and random forest (RF), and different deep-learning convolution neural networks (CNNs) for landslide detection. We use two training zones and one test zone to independently evaluate the performance of different methods in the highly landslide-prone Rasuwa district in Nepal. Twenty different maps are created using ANN, SVM and RF and different CNN instantiations and are compared against the results of extensive fieldwork through a mean intersection-over-union (mIOU) and other common metrics. This accuracy assessment yields the best result of 78.26% mIOU for a small window size CNN, which uses spectral information only. The additional information from a 5 m digital elevation model helps to discriminate between human settlements and landslides but does not improve the overall classification accuracy. CNNs do not automatically outperform ANN, SVM and RF, although this is sometimes claimed. Rather, the performance of CNNs strongly depends on their design, i.e., layer depth, input window sizes and training strategies. Here, we conclude that the CNN method is still in its infancy as most researchers will either use predefined parameters in solutions like Google TensorFlow or will apply different settings in a trial-and-error manner. Nevertheless, deep-learning can improve landslide mapping in the future if the effects of the different designs are better understood, enough training samples exist, and the effects of augmentation strategies to artificially increase the number of existing samples are better understood.


Sign in / Sign up

Export Citation Format

Share Document