scholarly journals Ultrasonic flaw detection spectrogram characterization of vermicular graphite cast iron engine cylinder head

2021 ◽  
Vol 1996 (1) ◽  
pp. 012005
Author(s):  
Changliang Guo ◽  
Duo Fang ◽  
Chengzong Wang ◽  
Tao Qin ◽  
Zenghua Liu ◽  
...  

Abstract The defects formed in the manufacture of the vermicular graphite cast iron engine cylinder head seriously affect the operation of the engine, which is necessary to detect. Ultrasonic testing is a non-destructive testing method that has the advantages of quick response, high resolution, and high security. In this paper, various types of specimens are prepared corresponding to different types of actual defects in the vermicular iron cylinder head. An ultrasonic A-scan system was built to test the specimens. The short-time Fourier transform, the continuous wavelet transform, the empirical wavelet transform, and the empirical modal decomposition were adopted to transform the signals into spectrograms which were further analyzed to reveal the inherent features of defects. The results show that the short-time Fourier transform can be used to distinguish all the common defects comparing to other methods. Comparing to the time-domain waveforms, the transformed spectrograms provide clear time-frequency distribution and highlight the inherent characteristics of the signal.

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Meifal Rusli

<p class="TTPParagraphothers"><em>The paper discusses means to predict sound source position emitted by fault machine components based on a single microphone moving in a linear track with constant speed.</em> The position of sound source that consists of some frequency spectrum is detected by time-frequency distribution of the sound signal through Short Time Fourier Transform (STFT) and Continues Wavelet Transform (CWT). <em>As the amplitude of sound pressure increases when the microphone moves closer, the source position and frequency are predicted from the peaks of time-frequency contour map</em><em>. </em>Firstly, numerical simulation is conducted using two sound sources that generate four different frequencies of sound. The second case is experimental analysis using rotating machine being monitored with unbalanced, misalignment and bearing defect. The result shows that application of both STFT and CWT are able to detect multiple sound sources position with multiple frequency peaks caused by machine fault. The STFT can indicate the frequency very clearly, but not for the peak position. On the other hand, the CWT is able to predict the position of sound at low frequency very clearly. However, it is failed to detect the exact frequency because of overlapping.</p>


2007 ◽  
Vol 19 (05) ◽  
pp. 331-339
Author(s):  
S. M. Debbal ◽  
F. Bereksi-Reguig

This paper presents the analysis and comparisons of the short time Fourier transform (STFT) and the continuous wavelet transform techniques (CWT) to the four sounds analysis (S1, S2, S3 and S4). It is found that the spectrogram short-time Fourier transform (STFT), cannot perfectly detect the internals components of these sounds that the continuous wavelet transform. However, the short time Fourier transform can provide correctly the extent of time and frequency of these four sounds. Thus, the STFT and the CWT techniques provide more features and characteristics of the sounds that will hemp physicians to obtain qualitative and quantitative measurements of the time-frequency characteristics.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. V143-V167 ◽  
Author(s):  
Charles I. Puryear ◽  
Oleg N. Portniaguine ◽  
Carlos M. Cobos ◽  
John P. Castagna

An inversion-based algorithm for computing the time-frequency analysis of reflection seismograms using constrained least-squares spectral analysis is formulated and applied to modeled seismic waveforms and real seismic data. The Fourier series coefficients are computed as a function of time directly by inverting a basis of truncated sinusoidal kernels for a moving time window. The method resulted in spectra that have reduced window smearing for a given window length relative to the discrete Fourier transform irrespective of window shape, and a time-frequency analysis with a combination of time and frequency resolution that is superior to the short time Fourier transform and the continuous wavelet transform. The reduction in spectral smoothing enables better determination of the spectral characteristics of interfering reflections within a short window. The degree of resolution improvement relative to the short time Fourier transform increases as window length decreases. As compared with the continuous wavelet transform, the method has greatly improved temporal resolution, particularly at low frequencies.


Author(s):  
Yovinia Carmeneja Hoar Siki ◽  
Natalia Magdalena Rafu Mamulak

Time-Frequency Analysis on Gong Timor Music has an important role in the application of signal-processing music such as tone tracking and music transcription or music signal notation. Some of Gong characters is heard by different ways of forcing Gong himself, such as how to play Gong based on the Player’s senses, a set of Gong, and by changing the tempo of Gong instruments. Gong's musical signals have more complex analytical criteria than Western music instrument analysis. This research uses a Gong instrument and two notations; frequency analysis of Gong music frequency compared by the Short-time Fourier Transform (STFT), Overlap Short-time Fourier Transform (OSTFT), and Continuous Wavelet Transform (CWT) method. In the STFT and OSTFT methods, time-frequency analysis Gong music is used with different windows and hop size while CWT method uses Morlet wavelet. The results show that the CWT is better than the STFT methods.


2016 ◽  
Vol 1 ◽  
Author(s):  
Meifal Rusli

<p class="TTPParagraphothers"><em>The paper discusses means to predict sound source position emitted by fault machine components based on a single microphone moving in a linear track with constant speed.</em> The position of sound source that consists of some frequency spectrum is detected by time-frequency distribution of the sound signal through Short Time Fourier Transform (STFT) and Continues Wavelet Transform (CWT). <em>As the amplitude of sound pressure increases when the microphone moves closer, the source position and frequency are predicted from the peaks of time-frequency contour map</em><em>. </em>Firstly, numerical simulation is conducted using two sound sources that generate four different frequencies of sound. The second case is experimental analysis using rotating machine being monitored with unbalanced, misalignment and bearing defect. The result shows that application of both STFT and CWT are able to detect multiple sound sources position with multiple frequency peaks caused by machine fault. The STFT can indicate the frequency very clearly, but not for the peak position. On the other hand, the CWT is able to predict the position of sound at low frequency very clearly. However, it is failed to detect the exact frequency because of overlapping.</p>


2012 ◽  
Vol 446-449 ◽  
pp. 2387-2391
Author(s):  
Wei Li ◽  
Shan You Li ◽  
Zhen Zhao ◽  
Zhi Xin Sun

Fourier transform and short-time Fourier transform are the main methods in signal analysis, which can reflect the spectrum signature of signals in the whole time domain; but they cannot be used in the multi-resolution analysis on the non-stationary signals. However, the wavelet transform overcome the limits of Fourier and short-time Fourier transform, which can be performed in accurate time-frequency analysis of signals. Furthermore, the diversity of wavelet functions makes the wavelet transform more adaptive and flexible. Applying the wavelet transform to seismic signal processing is the complement and improvement of existing processing methods. In this paper, the basic theory of the wavelet threshold denoising method and its application to the strong motion signal processing were mainly introduced. The high-frequency noises were removed, and simultaneously the high-frequency signals were effectively retained.


Author(s):  
Raul J. Alonso ◽  
Mohammad Noori ◽  
Arata Masuda ◽  
Zhikun Hou

Abstract Two time-frequency signal analysis methods, based on results of Continuous Wavelet Transform, and the Short Time Fourier Transform are compare for the purpose of on-line health monitoring application in systems subjected to random loads. A classic example with a simple signal is used to differentiate the characteristics of the two transforms suggesting the possible preference of a Wavelet Transform based approach over the Short Time Fourier Transform. Another example including a single degree of freedom system subjected to random loads proves how the inherent variable window capabilities on the Wavelet Transform perform better than the constant window length nature of the Short Time Fourier Transform for on-line health monitoring application.


2006 ◽  
Vol 129 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Bao Liu ◽  
Sherman Riemenschneider ◽  
Zuowei Shen

This paper presents a fast adaptive time–frequency analysis method for dealing with the signals consisting of stationary components and transients, which are encountered very often in practice. It is developed based on the short-time Fourier transform but the window bandwidth varies along frequency adaptively. The method therefore behaves more like an adaptive continuous wavelet transform. We use B-splines as the window functions, which have near optimal time–frequency localization, and derive a fast algorithm for adaptive time–frequency representation. The method is applied to the analysis of vibration signals collected from rotating machines with incipient localized defects. The results show that it performs obviously better than the short-time Fourier transform, continuous wavelet transform, and several other most studied time–frequency analysis techniques for the given task.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 909
Author(s):  
Azamatjon Kakhramon ugli Malikov ◽  
Younho Cho ◽  
Young H. Kim ◽  
Jeongnam Kim ◽  
Junpil Park ◽  
...  

Ultrasonic non-destructive analysis is a promising and effective method for the inspection of protective coating materials. Offshore coating exhibits a high attenuation rate of ultrasonic energy due to the absorption and ultrasonic pulse echo testing becomes difficult due to the small amplitude of the second echo from the back wall of the coating layer. In order to address these problems, an advanced ultrasonic signal analysis has been proposed. An ultrasonic delay line was applied due to the high attenuation of the coating layer. A short-time Fourier transform (STFT) of the waveform was implemented to measure the thickness and state of bonding of coating materials. The thickness of the coating material was estimated by the projection of the STFT into the time-domain. The bonding and debonding of the coating layers were distinguished using the ratio of the STFT magnitude peaks of the two subsequent wave echoes. In addition, the advantage of the STFT-based approach is that it can accurately and quickly estimate the time of flight (TOF) of a signal even at low signal-to-noise ratios. Finally, a convolutional neural network (CNN) was applied to automatically determine the bonding state of the coatings. The time–frequency representation of the waveform was used as the input to the CNN. The experimental results demonstrated that the proposed method automatically determines the bonding state of the coatings with high accuracy. The present approach is more efficient compared to the method of estimating bonding state using attenuation.


Sign in / Sign up

Export Citation Format

Share Document