scholarly journals Computer Dynamic and Intelligent Prediction Model for Surrounding Rock Deformation Grade using Numerical Simulation Method

2021 ◽  
Vol 2033 (1) ◽  
pp. 012130
Author(s):  
Lihua Lin
2013 ◽  
Vol 368-370 ◽  
pp. 1812-1815 ◽  
Author(s):  
Yong Qin Zhang ◽  
Le Le Sun ◽  
Wei Zhong Zhang ◽  
Li Dan Cao

In order to solve the technical problem of gob-side entry retaining in inclined coal seam, combined with the practical mining conditions in a certain mine, this paper adopts the discrete element method, applies numerical simulation to analyze inclined coal seam gob-side entry retaining with three different supporting ways, and studies surrounding rock deformation characteristics of gob-side entry retaining. The research results show that the filling body upper boundary for right side can control the roadway surrounding rock deformation better compared with the boundary is used as the hypotenuse; Meanwhile, the pressure of surrounding rock of coal seam gob-side entry retaining is mainly from the impact of the immediate roof natural fall of the upper goaf tilt and the weight of caving coal gangue and coal seam of immediate roof above; According to the surrounding rock deformation characteristics of coal seam remain gateway along goaf, it is determined to use combined supporting method of concrete filling in roadway sides and anchor wire rope supporting inside the roadways, providing the design basis of gob-side entry retaining in coal seam for the similar geological conditions.


2021 ◽  
Vol 248 ◽  
pp. 03031
Author(s):  
Chen Zhengwen

In order to understand and grasp the law of roof pressure on the working face of deep inclined coal seams, the law of support resistance distribution, the law of leading support stress distribution and the law of surrounding rock deformation of the two roadways, the 94101 working face of Zhangshuanglou Coal Mine was taken as the engineering background. Through a combination of field measurement, numerical simulation, theoretical analysis, etc, this paper analyzes the laws of roof migration and rock pressure manifestation in deep inclined coal seams.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chaolin Liu ◽  
Guohua Zhang

In order to effectively solve a series of problems such as the difficulty of coal and rock interbed roadway support in Gaojiazhuang Coal Mine and get a scientific and reasonable optimization scheme of surrounding rock support, theoretical analysis, numerical simulation, ultrasonic detection, field-effect test, and other means are adopted to analyze the instability of coal and rock interbed roadway. The results show that the interbedded roadway has weak interbedded cementation, and its ore pressure is more intense due to the influence of its interbedded weak structural plane. Based on Mohr’s strength envelope principle, it is proposed that horizontal stress is the main factor that causes a wide range of shear displacement, penetration crack, and surrounding rock failure of the roof of this kind of roadway. Through the finite element numerical simulation analysis, the deformation and failure law, stress distribution characteristics, and failure area distribution characteristics of coal and rock interbedding roadway surrounding rock are theoretically revealed, and the control effect of different support schemes on roadway surrounding rock deformation is greatly different. Based on the ultrasonic detection technology, it is proved that the roadway side failure has strong zoning characteristics, and the failure range and stress distribution range of the surrounding rock of the belt roadway in the 2103 working face of Gaojiazhuang Coal Mine are detected. Finally, the coupling strengthening support scheme combining prestressed anchor cable and bolt is proposed. The engineering application and the observation of surrounding rock deformation show that the reinforced support technology can effectively enhance the stability of the surrounding rock of the interbed roadway in Gaojiazhuang Coal Mine, and it has a good reference for the surrounding rock conditions of this kind of roadway.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Minglei Zhang ◽  
Chaoyu Chang ◽  
Wen Cao

The infiltration and physical and chemical effects of fissure water often have a degrading effect on the strength and bearing capacity of the surrounding rock of the roadway. With the increase of the time of water infiltration, the roadway deformation increases exponentially, resulting in a higher risk of roadway destruction. In this paper, targeting at the supporting and protection issues associated with the main inclined shaft during the water-drenching, a numerical simulation method was established to evaluate the impact of the fissure water on the deformation of the surrounding rock of the roadway, and a solution to control the top water in main inclined shafts by grouting was proposed. Through the numerical simulation method, the effective penetration range of the slurry in the surrounding rock and the variation of the tunnel deformation with the grouting timing were studied. A method of combining numerical simulation with on-site monitoring to determine a reasonable grouting timing was proposed. The field application suggests that grouting at a reasonable timing can effectively control the influence of seepage water from the roof crack of the main inclined shaft on the deformation of the roadway surrounding rock, improve the integrity of the roadway surrounding rock, increase the bearing capacity of the support, and maintain the safety and stability of the roadway surrounding rock of the main inclined shaft. Furthermore, this study can provide insightful references to the grouting reinforcement adopted by similar main inclined shafts.


2021 ◽  
Vol 272 ◽  
pp. 02013
Author(s):  
Kun Wang ◽  
Shun Yu ◽  
Yong Pan ◽  
Lushi Wang

The setting of circumferential distance of system anchor rod in highway tunnel is related to the safety of tunnel structure, and also affects the project cost. The “code for design of highway tunnels” issued in 2018 also adjusted the circumferential spacing arrangement of the system bolts of the tunnel. Based on a highway tunnel project, the circumferential spacing of system bolts in deep buried section of grade V surrounding rock is adjusted from 0.8m to 1.2m, and the numerical simulation and comparative analysis before and after the optimization of bolt spacing are carried out. The field monitoring and measurement data show that the surrounding rock deformation after adjustment has little effect, and the cavern is stable as a whole, which can guide the optimization implementation of subsequent sections.


Sign in / Sign up

Export Citation Format

Share Document