scholarly journals Development of a Modelica-based simplified building model for district energy simulations

2021 ◽  
Vol 2042 (1) ◽  
pp. 012078
Author(s):  
Alessandro Maccarini ◽  
Enrico Prataviera ◽  
Angelo Zarrella ◽  
Alireza Afshari

Abstract Urban Building Energy Simulation (UBES) is an efficient tool to investigate and subsequently reduce energy demand of urban areas. Nevertheless, UBES has always been a challenging task due the trade-off between accuracy, computational speed and parametrization. In order to reduce these computation and parameterization requirements, model reduction and simplification methods aim at representing building behaviour with an acceptable accuracy, but using less equations and input parameters. This paper presents the development and validation results of a simplified urban simulation model based on the ISO 13790 Standard and written in the Modelica language. The model describes the thermo-physical behaviour of buildings by means of an equivalent electric network consisting of five resistances and one capacitance. The validation of the model was carried out using four cases of the ANSI/ASHRAE Standard 140. In general, the model shows good accuracy and the validation provided values within the acceptable ranges.

2019 ◽  
pp. 1306-1323
Author(s):  
Marcel Bruse ◽  
Romain Nouvel ◽  
Parag Wate ◽  
Volker Kraut ◽  
Volker Coors

Different associated properties of city models like building geometries, building energy systems, building end uses, and building occupant behavior are usually saved in different data formats and are obtained from different data sources. Experience has shown that the integration of these data sets for the purpose of energy simulation on city scale is often cumbersome and error prone. A new application domain extension for CityGML has been developed in order to integrate energy-related figures of buildings, thermal volumes, and facades with their geometric descriptions. These energy-related figures can be parameters or results of energy simulations. The applicability of the new application domain extension has been demonstrated for heating energy demand calculation.


2016 ◽  
Vol 2 (1) ◽  
pp. 49 ◽  
Author(s):  
Miguel Núñez Peiró ◽  
Emilia Román López ◽  
Carmen Sánchez-Guevara Sánchez ◽  
Francisco Javier Neila González

Resumen Esta investigación se enmarca dentro del proyecto MODIFICA (modelo predictivo - Edificios - Isla de Calor Urbano), financiado por el Programa de I + D + i Orientada a los Retos de la sociedad 'Retos Investigación' de 2013. Está dirigido a desarrollar un modelo predictivo de eficiencia energética para viviendas, bajo el efecto de isla de calor urbano (AUS) con el fin de ponerla en práctica en la evaluación de la demanda de energía real y el consumo en las viviendas. A pesar de los grandes avances que se han logrado durante los últimos años en el rendimiento energético de edificios, los archivos de tiempo utilizados en la construcción de simulaciones de energía se derivan generalmente de estaciones meteorológicas situadas en las afueras de la ciudad. Por lo tanto, el efecto de la Isla de Calor Urbano (ICU) no se considera en estos cálculos, lo que implica una importante falta de precisión. Centrado en explorar cómo incluir los fenómenos ICU, el presente trabajo recopila y analiza la dinámica por hora de la temperatura en diferentes lugares dentro de la ciudad de Madrid. Abstract This research is framed within the project MODIFICA (Predictive model - Buildings - Urban Heat Island), funded by Programa de I+D+i orientada a los retos de la sociedad 'Retos Investigación' 2013. It is aimed at developing a predictive model for dwelling energy performance under the Urban Heat Island (UHI) effect in order to implement it in the evaluation of real energy demand and consumption in dwellings. Despite great advances on building energy performance have been achieved during the last years, weather files used in building energy simulations are usually derived from weather stations placed in the outskirts of the city. Hence, Urban Heat Island (UHI) effect is not considered in this calculations, which implies an important lack of accuracy. Focused on exploring how to include the UHI phenomena, the present paper compiles and analyses the hourly dynamics of temperature in different locations within the city of Madrid. 


Climate ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
Pierdonato Romano ◽  
Enrico Prataviera ◽  
Laura Carnieletto ◽  
Jacopo Vivian ◽  
Michele Zinzi ◽  
...  

In recent decades, the cooling energy demand in urban areas is increasing ever faster due to the global warming and the growth of developing economies. In this perspective, the urban building energy modelling community is focusing its research activities on innovative tools and policy actions to improve cities’ sustainability. This work aims to present a novel module of the EUReCA (Energy Urban Resistance Capacitance Approach) platform for evaluating the effects of the interaction between district’s buildings in the cooling season. EUReCA predicts the urban energy demand using a bottom-up approach and low computational resources. The new module allows us to evaluate the mutual shading between buildings and the urban heat island effects, and it is well integrated with the calculation of the energy demand of buildings. The analysis was carried out considering a real case study in Padua (Italy). Results show that the urban heat island causes an average increase of 2.2 °C in the external air temperature mainly caused by the waste heat rejected from cooling systems. This involves an increase in urban cooling energy and electricity demand, which can be affected between 6 and 8%. The latter is the most affected by the urban heat island (UHI), due to the degradation it causes on the HVAC systems’ efficiency.


2019 ◽  
Author(s):  
Felix Bünning ◽  
Andrew Bollinger ◽  
Philipp Heer ◽  
Roy S. Smith ◽  
John Lygeros

Advanced control concepts for building energy systems, such as Model Predictive Control, often require models that forecast the energy demand of a building. Such models are commonly based on first principles, however the cost and effort required to develop such models may be prohibitive for real-life applications. As an alternative, we introduce and validate a data-driven simulation approach based on Artificial Neural Networks to forecast the heating demand of buildings. The forecast is enhanced with the help of two correction methods, based on online learning and forecast error auto-correlation. Validation results based on data from four office buildings suggest that our method shows better forecasting performance than a fitted 5R3C building model.


2015 ◽  
Vol 4 (3) ◽  
pp. 59-77 ◽  
Author(s):  
Marcel Bruse ◽  
Romain Nouvel ◽  
Parag Wate ◽  
Volker Kraut ◽  
Volker Coors

Different associated properties of city models like building geometries, building energy systems, building end uses, and building occupant behavior are usually saved in different data formats and are obtained from different data sources. Experience has shown that the integration of these data sets for the purpose of energy simulation on city scale is often cumbersome and error prone. A new application domain extension for CityGML has been developed in order to integrate energy-related figures of buildings, thermal volumes, and facades with their geometric descriptions. These energy-related figures can be parameters or results of energy simulations. The applicability of the new application domain extension has been demonstrated for heating energy demand calculation.


2016 ◽  
Vol 18 (1) ◽  
pp. 104 ◽  
Author(s):  
R. Djedjig ◽  
M. El Ganaoui ◽  
R. Belarbi ◽  
R. Bennacer

Green walls and green roofs are innovative construction technologies involving the use environmentally friendly materials. In addition to their aesthetical and environmental benefits, green walls have significant thermal effects on buildings and heat islands within high-density urban areas. In this paper, we study the impact of an innovative green wall system on building energy performance. These green walls have specific composition and particular geometry that can lead to higher thermal performances and therefore more significant impact on building energy performance. The development, validation and prior integration of a hygrothermal green wall model in a transient building simulation tool make possible the assessment of the energy performance of buildings when covered by green walls. The used model was adapted to be the particular forms and composition of the studied green walls. In parallel, this type of green walls has been installed on a one tenth building mockup to be experimented. The aim of the experiment is to measure the thermal effects and to calibrate some parameters of the numerical model. The results highlight the thermal benefits of this kind of green walls in summer condition. They reduce annual energy demand of building up to 37% for hot climates.


2018 ◽  
Vol 39 (2) ◽  
pp. 147-160
Author(s):  
Yusuke Arima ◽  
Ryozo Ooka ◽  
Hideki Kikumoto

We proposed a new type of weather year data for building energy simulations named the typical and design weather year, which can be used for estimating both average and peak energy demand for one year of building energy simulation. The typical and design weather year is generated using a quantile mapping method. In this paper, we made the typical and design weather year for three cities, Tokyo, Sapporo, and Kagoshima, representing a wide range of climatic conditions in Japan, and evaluated its performance by conducting building energy simulations targeting prototypical office buildings. We found that the typical and design weather year was more than twice as accurate in estimating average energy demand as the existing typical weather year data. Typical and design weather year can also estimate peak energy demand with high accuracy. Practical application: The cumulative distribution functions of a target weather data set, on which quantile mapping is performed, are modified to consist entirely of parent multi-year weather data. Therefore, typical and design weather years based on quantile mapping are expected to be useful as versatile weather year data representing the various weather characteristics of multi-year conditions. In this study, we found that the typical and design weather year can estimate both average and peak energy demands in building energy simulations. New type of weather year data named the typical and design weather year can be used as both typical and design weather data.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3045 ◽  
Author(s):  
Roberta Di Bari ◽  
Rafael Horn ◽  
Björn Nienborg ◽  
Felix Klinker ◽  
Esther Kieseritzky ◽  
...  

New materials and technologies have become the main drivers for reducing energy demand in the building sector in recent years. Energy efficiency can be reached by utilization of materials with thermal storage potential; among them, phase change materials (PCMs) seem to be promising. If they are used in combination with solar collectors in heating applications or with water chillers or in chilled ceilings in cooling applications, PCMs can provide ecological benefits through energy savings during the building’s operational phase. However, their environmental value should be analyzed by taking into account their whole lifecycle. The purpose of this paper is the assessment of PCMs at the material level as well as at higher levels, namely the component and building levels. Life cycle assessment analyses are based on information from PCM manufacturers and building energy simulations. With the newly developed software “Storage LCA Tool” (Version 1.0, University of Stuttgart, IABP, Stuttgart, Germany), PCM storage systems can be compared with traditional systems that do not entail energy storage. Their benefits can be evaluated in order to support decision-making on energy concepts for buildings. The collection of several case studies shows that PCM energy concepts are not always advantageous. However, with conclusive concepts, suitable storage dimensioning and ecologically favorable PCMs, systems can be realized that have a lower environmental impact over the entire life cycle compared to traditional systems.


2020 ◽  
Author(s):  
Jens Pfafferott ◽  
Sascha Rißmann ◽  
Matthias Sühring ◽  
Farah Kanani-Sühring ◽  
Björn Maronga

Abstract. There is a strong interaction between the urban and the building energy balance. The urban climate affects the heat transfer through exterior walls, the longwave heat transfer between the building surfaces and the surroundings, the shortwave solar heat gains and the heat transport by ventilation. Considering also the internal heat gains and the heat capacity of the building structure, the energy demand for heating and cooling and the indoor thermal environment can be calculated based on the urban climate. According to the building energy concept, the energy demand results in an (anthropogenic) waste heat, this is directly transferred to the urban environment. Furthermore, the indoor temperature is re-coupled via the building envelope to the urban environment and affects indirectly the urban climate with a time shifted and damped temperature fluctuation. We developed and implemented a holistic building model for the combined calculation of indoor climate and energy demand based on an analytic solution of Fourier’s equation. The building model is integrated via an urban surface model into the urban climate model.


2017 ◽  
Vol 9 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Vytautas Pajaujis ◽  
Violeta Motuzienė

There are a lot of methodologies and simulation tools in the world to assess the energy demand of a building. The results of simulation tools often differ, but the causes are not analysed in more detail. The article compares the results of two most widely used dynamic energy simulation tools – DesignBuilder and IES-VE, when simulation of identical building model with the same assumptions in both programs is performed. In addition, for comparison, calculations are performed with the PHPP program, as well as using STR2.09.04:2008 methodology. The tools compare the heating, cooling capacity, energy consumption of the building for heating and cooling the building during the simulation. Following differences comparing energy demands gained with two different simulation tools are defined: ventilation – up to 11%, cooling – up to 9%, heating – up to 5%.


Sign in / Sign up

Export Citation Format

Share Document