Performance verification of typical and design weather year by thermal load calculation targeting office building

2018 ◽  
Vol 39 (2) ◽  
pp. 147-160
Author(s):  
Yusuke Arima ◽  
Ryozo Ooka ◽  
Hideki Kikumoto

We proposed a new type of weather year data for building energy simulations named the typical and design weather year, which can be used for estimating both average and peak energy demand for one year of building energy simulation. The typical and design weather year is generated using a quantile mapping method. In this paper, we made the typical and design weather year for three cities, Tokyo, Sapporo, and Kagoshima, representing a wide range of climatic conditions in Japan, and evaluated its performance by conducting building energy simulations targeting prototypical office buildings. We found that the typical and design weather year was more than twice as accurate in estimating average energy demand as the existing typical weather year data. Typical and design weather year can also estimate peak energy demand with high accuracy. Practical application: The cumulative distribution functions of a target weather data set, on which quantile mapping is performed, are modified to consist entirely of parent multi-year weather data. Therefore, typical and design weather years based on quantile mapping are expected to be useful as versatile weather year data representing the various weather characteristics of multi-year conditions. In this study, we found that the typical and design weather year can estimate both average and peak energy demands in building energy simulations. New type of weather year data named the typical and design weather year can be used as both typical and design weather data.

2019 ◽  
pp. 1306-1323
Author(s):  
Marcel Bruse ◽  
Romain Nouvel ◽  
Parag Wate ◽  
Volker Kraut ◽  
Volker Coors

Different associated properties of city models like building geometries, building energy systems, building end uses, and building occupant behavior are usually saved in different data formats and are obtained from different data sources. Experience has shown that the integration of these data sets for the purpose of energy simulation on city scale is often cumbersome and error prone. A new application domain extension for CityGML has been developed in order to integrate energy-related figures of buildings, thermal volumes, and facades with their geometric descriptions. These energy-related figures can be parameters or results of energy simulations. The applicability of the new application domain extension has been demonstrated for heating energy demand calculation.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4115 ◽  
Author(s):  
Vincenzo Costanzo ◽  
Gianpiero Evola ◽  
Marco Infantone ◽  
Luigi Marletta

Building energy simulations are normally run through Typical Weather Years (TWYs) that reflect the average trend of local long-term weather data. This paper presents a research aimed at generating updated typical weather files for the city of Catania (Italy), based on 18 years of records (2002–2019) from a local weather station. The paper reports on the statistical analysis of the main recorded variables, and discusses the difference with the data included in a weather file currently available for the same location based on measurements taken before the 1970s but still used in dynamic energy simulation tools. The discussion also includes a further weather file, made available by the Italian Thermotechnical Committee (CTI) in 2015 and built upon the data registered by the same weather station but covering a much shorter period. Three new TWYs are then developed starting from the recent data, according to well-established procedures reported by ASHRAE and ISO standards. The paper discusses the influence of the updated TWYs on the results of building energy simulations for a typical residential building, showing that the cooling and heating demand can differ by 50% or even 65% from the simulations based on the outdated weather file.


2020 ◽  
Vol 12 (17) ◽  
pp. 6788 ◽  
Author(s):  
Eva Lucas Segarra ◽  
Germán Ramos Ruiz ◽  
Vicente Gutiérrez González ◽  
Antonis Peppas ◽  
Carlos Fernández Bandera

The use of building energy models (BEMs) is becoming increasingly widespread for assessing the suitability of energy strategies in building environments. The accuracy of the results depends not only on the fit of the energy model used, but also on the required external files, and the weather file is one of the most important. One of the sources for obtaining meteorological data for a certain period of time is through an on-site weather station; however, this is not always available due to the high costs and maintenance. This paper shows a methodology to analyze the impact on the simulation results when using an on-site weather station and the weather data calculated by a third-party provider with the purpose of studying if the data provided by the third-party can be used instead of the measured weather data. The methodology consists of three comparison analyses: weather data, energy demand, and indoor temperature. It is applied to four actual test sites located in three different locations. The energy study is analyzed at six different temporal resolutions in order to quantify how the variation in the energy demand increases as the time resolution decreases. The results showed differences up to 38% between annual and hourly time resolutions. Thanks to a sensitivity analysis, the influence of each weather parameter on the energy demand is studied, and which sensors are worth installing in an on-site weather station are determined. In these test sites, the wind speed and outdoor temperature were the most influential weather parameters.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2103
Author(s):  
Michele Libralato ◽  
Giovanni Murano ◽  
Alessandra De Angelis ◽  
Onorio Saro ◽  
Vincenzo Corrado

Heat and moisture (HM) transfer simulations of building envelopes and whole building energy simulations require adequate weather files. The common approach is to use weather data of reference years constructed from meteorological records. The weather record affects the capability of representing the real weather of the resulting reference years. In this paper the problem of the influence of the length of the records on the representativeness of the reference years is addressed and its effects are evaluated also for the applicative case of the moisture accumulation risk analysis with the Glaser Method and with DELPHIN 6, confirming that records shorter than 10 years could lead to less representative reference years. On the other hand, it is shown that reference years obtained from longer periods are not representative of the most recent years, which present higher dry-bulb air temperatures due to a short-term climate change effect observed in all the considered weather records. An alternative representative year (Moisture Representative Year) to be used in building energy simulations with a strong dependence on moisture is presented.


2011 ◽  
Vol 33 (4) ◽  
pp. 387-406 ◽  
Author(s):  
H Du ◽  
CP Underwood ◽  
JS Edge

In this study, test reference year (TRY) data for three UK cities are generated from the new UKCP09 climate change projections 1 for a variety of future time horizons and carbon emission scenario assumptions. The data are applied to the energy simulation of three commercial buildings and one house for the three city locations (London, Manchester and Edinburgh), three future time horizons in this century and three carbon emission scenarios. Results are compared with those generated using alternative TRYs from two other research groups who used UKCP09 1 as well as with the existing TRY data sets which form the CIBSE Future Weather Years 2 in order to produce robust results. Results of future simulations of peak summer operative temperatures, peak cooling demand, annual cooling energy, peak heating demand and annual heating energy are presented for the four building case studies benchmarked against control weather data for the period 1960–1989. The results show increasing internal operative temperatures (non-air-conditioned) and increasing air-conditioning demands (air-conditioned) throughout this century and though peak heating demands remain similar to control data, annual heating energy consumptions can be expected to fall sharply. Practical applications: Currently, practitioners can use Test Reference Years for use in building energy simulations. In 2009, the CIBSE released Future Weather Years, which go further by allowing practitioners to explore the thermal and comfort behaviour of buildings at future time horizons thus helping to ‘future proof’ a design. In 2009, the United Kingdom Climate Impacts Programme released a new generation of climate change scenario data (the UKCP09 climate change projections) using probabilistic methods. These are the most comprehensive data yet and provides a greater degree of detail than was available to generate the CIBSE Future Weather Years. It is therefore likely that the new data will gradually become the normal basis for investigating future building thermal and comfort response. In this study, a sample of TRY is generated from the UKCP09 data and applied to the simulation of a sample of ‘real’ buildings. The results are compared with both the existing CIBSE Future Weather Years as well as with Test Reference Years generated using UKCP09 by two other research groups. The results provide a robust way forward for simulating building thermal and comfort response using future weather data.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7157
Author(s):  
Michele Libralato ◽  
Alessandra De Angelis ◽  
Giulia Tornello ◽  
Onorio Saro ◽  
Paola D’Agaro ◽  
...  

Transient building energy simulations are powerful design tools that are used for the estimation of HVAC demands and internal hygrothermal conditions of buildings. These calculations are commonly performed using a (often dated) typical meteorological year, generated from past weather measurements excluding extreme weather conditions. In this paper the results of multiyear building simulations performed considering coupled Heat and Moisture Transfer (HMT) in building materials are presented. A simple building is simulated in the city of Udine (Italy) using a weather record of 25 years. Performing a multiyear simulation allows to obtain a distribution of results instead of a single number for each variable. The small therm climate change is shown to influence thermal demands and internal conditions with multiyear effects. From this results it is possible to conclude that weather records used as weather files have to be periodically updated and that moisture transfer is relevant in energy and comfort calculations. Moreover, the simulations are performed using the software WUFI Plus and it is shown that using a thermal model for the building envelope could be a non negligible simplification for the comfort related calculations.


2016 ◽  
Vol 859 ◽  
pp. 88-92 ◽  
Author(s):  
Radu Manescu ◽  
Ioan Valentin Sita ◽  
Petru Dobra

Energy consumption awareness and reducing consumption are popular topics. Building energy consumption counts for almost a third of the global energy consumption and most of that is used for building heating and cooling. Building energy simulation tools are currently gaining attention and are used for optimizing the design for new and existing buildings. For O&M phase in existing buildings, the multiannual average weather data used in the simulation tools is not suitable for evaluating the performance of the building. In this study an existing building was modeled in EnergyPlus. Real on-site weather data was used for the dynamic simulation for the heating energy demand with the aim of comparing the measured energy consumption with the simulated one. The aim is to develop an early fault detection tool for building management.


2021 ◽  
Author(s):  
Pouriya Jafarpur

The study describes the results of climate change impact assessment on building energy use in Toronto, Canada. Accordingly, three future weather data sets are generated and applied to the energy simulation of 16 building prototypes. Both statistical and dynamical downscaling techniques are used to generate the future weather files. The results indicate an average decrease for the future in the range of 18-33% in heating EUI, and an average increase of 16-126% in cooling EUI, depending on the baseline climate and building type. In addition, the GHG emissions for each building model are presented. It is concluded that the application of future weather files for building performance simulation leads to a better quantification of building energy demand in the future than a historical weather file. Furthermore, the results demonstrate the need to modify and adapt existing building modelling regulations and to plan future building according to the future climate.


2016 ◽  
Vol 2 (1) ◽  
pp. 49 ◽  
Author(s):  
Miguel Núñez Peiró ◽  
Emilia Román López ◽  
Carmen Sánchez-Guevara Sánchez ◽  
Francisco Javier Neila González

Resumen Esta investigación se enmarca dentro del proyecto MODIFICA (modelo predictivo - Edificios - Isla de Calor Urbano), financiado por el Programa de I + D + i Orientada a los Retos de la sociedad 'Retos Investigación' de 2013. Está dirigido a desarrollar un modelo predictivo de eficiencia energética para viviendas, bajo el efecto de isla de calor urbano (AUS) con el fin de ponerla en práctica en la evaluación de la demanda de energía real y el consumo en las viviendas. A pesar de los grandes avances que se han logrado durante los últimos años en el rendimiento energético de edificios, los archivos de tiempo utilizados en la construcción de simulaciones de energía se derivan generalmente de estaciones meteorológicas situadas en las afueras de la ciudad. Por lo tanto, el efecto de la Isla de Calor Urbano (ICU) no se considera en estos cálculos, lo que implica una importante falta de precisión. Centrado en explorar cómo incluir los fenómenos ICU, el presente trabajo recopila y analiza la dinámica por hora de la temperatura en diferentes lugares dentro de la ciudad de Madrid. Abstract This research is framed within the project MODIFICA (Predictive model - Buildings - Urban Heat Island), funded by Programa de I+D+i orientada a los retos de la sociedad 'Retos Investigación' 2013. It is aimed at developing a predictive model for dwelling energy performance under the Urban Heat Island (UHI) effect in order to implement it in the evaluation of real energy demand and consumption in dwellings. Despite great advances on building energy performance have been achieved during the last years, weather files used in building energy simulations are usually derived from weather stations placed in the outskirts of the city. Hence, Urban Heat Island (UHI) effect is not considered in this calculations, which implies an important lack of accuracy. Focused on exploring how to include the UHI phenomena, the present paper compiles and analyses the hourly dynamics of temperature in different locations within the city of Madrid. 


Sign in / Sign up

Export Citation Format

Share Document