scholarly journals Shear Wave Velocity (Vs) at Reactor Building, Experimental Power Reactor Indonesia

2021 ◽  
Vol 2048 (1) ◽  
pp. 012040
Author(s):  
Eko Rudi Iswanto ◽  
Theo Alvin Ryanto ◽  
Abimanyu BW Setiaji ◽  
Hadi Suntoko

Abstract Experimental Power Reactor (RDE) is a Gen IV Reactor type with Hydrogen Gas Cooler. Despite this type of reactor has high safety performance, earthquake hazard should be demonstrated. Detail Engineering Design Activity on RDE has been conducted in the past 3 years. In the end of this phase, preliminary parameter design such as shear wave velocity (Vs) should be defined. This parameter correlated with subsurface condition which has high uncertainty. This study is conducted in order to estimate values of Vs. Generally, the data collection is carried out through geotechnical investigation but this method cost more time and resources. In the recent decades, another method has been widely introduced which is geophysical passive source Microtremor Array Measurement (MAM) with Spatial Auto Correlation (SPAC) method. This method can be used to estimate values of Vs and can be used as preliminary reference to define the position of borehole before construction phase getting started. The result shows, the location of reactor building is estimated to have 5 soil layers with varying Vs value. The Vs value of the first soil layer is about 152 m/s started from the surface to 8 m depth. The second soil layer has 169 m/s Vs value started from 8 m to 20 m depth. The third soil layer, started from 20 m to 36 m depth, has 384 m/s Vs value. The next layer as the fourth layer of soil, started from 36 m to 70 m depth with a value of Vs around 526 m/s. The last soil layer with a depth 70 m to 100 m, has Vs value of 667 m/s. Based on these Vs value estimation from surface to 30 m depth, the average value of the shear wave velocity (Vs 30) is m/s. Thus, reactor building is located in the site class SD with medium soil categories according to SNI 1726-2012. The foundation design and excavation planning phase, this information is needed.

2021 ◽  
pp. 875529302110010
Author(s):  
Sameer Ladak ◽  
Sheri Molnar ◽  
Samantha Palmer

Site characterization is a crucial component in assessing seismic hazard, typically involving in situ shear-wave velocity ( VS) depth profiling, and measurement of site amplification including site period. Noninvasive methods are ideal for soil sites and become challenging in terms of field logistics and interpretation in more complex geologic settings including rock sites. Multiple noninvasive active- and passive-seismic techniques are applied at 25 seismograph stations across Eastern Canada. It is typically assumed that these stations are installed on hard rock. We investigate which site characterization methods are suitable at rock sites as well as confirm the hard rock assumption by providing VS profiles. Active-source compression-wave refraction and surface wave array techniques consistently provide velocity measurements at rock sites; passive-source array testing is less consistent but it is our most suitable method in constraining the rock VS. Bayesian inversion of Rayleigh wave dispersion curves provides quantitative uncertainty in the rock VS. We succeed in estimating rock VS at 16 stations, with constrained rock VS estimates at 7 stations that are consistent with previous estimates for Precambrian and Paleozoic rock types. The National Building Code of Canada uses solely the time-averaged shear-wave velocity of the upper 30 m ( VS30) to classify rock sites. We determine a mean VS30 of ∼ 1600 m/s for 16 Eastern Canada stations; the hard rock assumption is correct (>1500 m/s) but not as hard as often assumed (∼2000 m/s). Mean variability in VS30 is ∼400 m/s and can lead to softer rock classifications, in particular, for Paleozoic rock types with lower average rock VS near the hard/soft rock boundary. Microtremor and earthquake horizontal-to-vertical spectral ratios are obtained and provide site period classifications as an alternative to VS30.


2021 ◽  
Author(s):  
Harry George Poulos

Abstract This paper describes an approach for utilizing in-situ measurements of shear wave velocity Vs to carry out preliminary and check design calculations for shallow and deep foundations. For estimates of foundation movements, Vs can be used directly to estimate the small-strain stiffness of the soil or rock strata, while for ultimate capacity calculations, use is made of empirical correlations between Vs and penetration resistance measures, which in turn are correlated to the foundation resistance characteristics. The approach is applied to a series of published tests on shallow footings, and on a series of pile load tests for a very tall building. For these cases, comparisons of the calculated with the measured load – settlement behaviour indicates that the suggested approach provides a reasonable, albeit somewhat conservative, level of agreement.


2018 ◽  
Vol 4 (12) ◽  
pp. 2937
Author(s):  
Amin Ghanbari ◽  
Younes Daghigh ◽  
Forough Hassanvand

The average shear wave velocity of the uppermost 30 m of earth (Vs30) is widely used in seismic geotechnical engineering and soil-structure interaction studies. In this regard, any given subsurface profile is assigned to a specific site class according to its average shear wave velocity. However, in a real-world scenario, entirely different velocity models could be considered in the same class type due to their identical average velocities. The objective of the present study is to underline some of the risks associated with solely using Vs30 as a classification tool. To do so, three imaginary soil profiles that are quite different in nature, but all with the same average Vs were considered and were subjected to the same earthquake excitation. Seismic records acquired at the ground surface demonstrated that the three sites have different ground motion amplifications. Then, the different ground responses were used to excite a five-story structure. Results confirmed that even sites from the same class can indeed exhibit different responses under identical seismic excitations. Our results demonstrated that caution should be practiced when large-contrast velocity models are involved as such profiles are prone to pronounced ground motion amplification. This study, which serves as link between soil dynamics and structural dynamics, warns practitioners about the risks associated with oversimplifying the subsurface profile. Such oversimplifications can potentially undermine the safety of existing or future structures.


2021 ◽  
Vol 24 (4) ◽  
pp. 473-484
Author(s):  
Cengiz Kurtuluş ◽  
Ibrahim Sertcelik ◽  
Fadime Sertçelik ◽  
Hamdullah Livaoğlu ◽  
Cüneyt Şaş

In this study, shallow seismic surveys, including seismic refraction, Multichannel Analysis of Surface Waves (MASW), Refraction Microtremor (ReMi), and Microtremor measurements were conducted to estimate site characterization at 26 strong-motion stations of AFAD (Disaster and Emergency Management Presidency) in the province of Hatay, situated in one of the most seismically active regions in southern Turkey. The Horizontal to vertical spectral ratio (HVSR) technique was applied, using smoothed Fourier spectra derived from a long duration series to determine dominant frequency values at different amplification levels. Shear wave velocity up to 30 m of the ground was detected with MASW analysis. In the ReMi analysis, up to 80 m was reached with a corresponding average of 650 m/s shear wave velocity. The shear wave velocities estimated by the MASW method up to 30 m were compared with those found by the ReMi method, and they were observed to be very compatible. The province of Hatay was classified according to Vs30 based NEHRP Provisions, Eurocode-8, the Turkish Building Earthquake Regulation (TBDY-2018), and Rodriguez-Marek et al. (2001). The shear-wave velocity (Vs30), Horizontal to Vertical ratio’s (H/V) peak amplitude, dominant period, and site class of each site were determined. The H/V peak amplitudes range between 1.9 and 7.6, while the predominant periods vary from 0.23 sec to 2.94sec in the study area. These results are investigated to explain the consistency of site classification schemes.


2018 ◽  
Author(s):  
Shivamanth Angadi ◽  
Mayank Desai

Abstract. The Seismic hazard study was carried out for Maharashtra state, Bombay (Latitude 18.940 N, Longitude 72.840 E). In the present study the geological fault is known as West coast fault and Son Narmada Faults were studied and used for the earthquake simulation, extended finite fault method originally FINSIM given by M. Atkinson (1998), was used to simulate an earthquake of 6.5 Mw. The soil classification was carried out by the Shear wave velocity and the relation between Shear wave velocity and SPT valves were also recommended by Sumedh Y. Mhaske (2011), since the Mumbai has been formed by the conglomeration of various islands which has come together to form a single landmass. The soil investigation suggested that Most of the region comes under the Class D and C for the worst case simulation we have used the site class D. The peak ground accelerations (PGA) vary from 0.03g to 0.133 g. While coming to zonal area IS1893:2002 still consider the Mumbai city under zone III with the Z value of 0.16 and the result have been compared with the analysis done by many researchers in the same area.


2000 ◽  
Vol 16 (1) ◽  
pp. 41-67 ◽  
Author(s):  
R. Dobry ◽  
R. D. Borcherdt ◽  
C. B. Crouse ◽  
I. M. Idriss ◽  
W. B. Joyner ◽  
...  

Recent code provisions for buildings and other structures (1994 and 1997 NEHRP Provisions, 1997 UBC) have adopted new site amplification factors and a new procedure for site classification. Two amplitude-dependent site amplification factors are specified: Fa for short periods and Fv for longer periods. Previous codes included only a long period factor S and did not provide for a short period amplification factor. The new site classification system is based on definitions of five site classes in terms of a representative average shear wave velocity to a depth of 30 m (V¯s). This definition permits sites to be classified unambiguously. When the shear wave velocity is not available, other soil properties such as standard penetration resistance or undrained shear strength can be used. The new site classes denoted by letters A - E, replace site classes in previous codes denoted by S1 - S4. Site classes A and B correspond to hard rock and rock, Site Class C corresponds to soft rock and very stiff / very dense soil, and Site Classes D and E correspond to stiff soil and soft soil. A sixth site class, F, is defined for soils requiring site-specific evaluations. Both Fa and Fv are functions of the site class, and also of the level of seismic hazard on rock, defined by parameters such as Aa and Av ( 1994 NEHRP Provisions), Ss and Sl ( 1997 NEHRP Provisions) or Z ( 1997 UBC). The values of Fa and Fv decrease as the seismic hazard on rock increases due to soil nonlinearity. The greatest impact of the new factors Fa and Fv as compared with the old S factors occurs in areas of low-to-medium seismic hazard. This paper summarizes the new site provisions, explains the basis for them, and discusses ongoing studies of site amplification in recent earthquakes that may influence future code developments.


2017 ◽  
Vol 101 ◽  
pp. 05010 ◽  
Author(s):  
Windu Partono ◽  
Masyhur Irsyam ◽  
Sri Prabandiyani Retno Wardani

2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Marcelo Miranda Cremaschi ◽  
Daniella Escribano Leiva ◽  
Pedro Saavedra González ◽  
Cristián Molina Vicuña

AbstractIn this study the dynamic response of a machine-foundation-soil system was investigated experimentally and theoretically. The objective of this work is to analyze the effects of the water table fluctuations in the soil on the response of the foundation and machine subjected to dynamic loads at frequencies ranging from 30 to 50 Hz. A physical model test was developed to simulate a machine-foundation-soil system, with measurements of the machine vibrations and the shear wave velocity of the soil. It is found that the water level produced significant changes in the shear wave velocity of the soil and, thus, in the natural frequencies of the system. For a fully saturated soil the vibration levels increased due to a working condition near resonance. The results showed a good agreement between the experimental vibration measurements and the predictions based on the theory used in foundation design, when considering the appropriate soil parameters. It is concluded that proper estimation of soil parameters is of high importance in the design process of machine foundations.


2015 ◽  
Vol 17 (1) ◽  
pp. 57
Author(s):  
Marjiyono Marjiyono ◽  
Hadi Suntoko ◽  
A. Soehaimi ◽  
Yuliastuti Yuliastuti ◽  
H. Syaeful

ABSTRAK KELAS SOIL DAERAH SEKITAR RENCANA TAPAK REAKTOR DAYA EKSPERIMENTAL (RDE) SERPONG DARI DATA MIKROTREMOR. Karakteristik geologi permukaan memegang peranan penting dalam analisis respon gelombang di suatu wilayah.  Sehubungan dengan rencana pembangunan Reaktor Daya Eksperimental (RDE) di Serpong, telah dilakukan pemodelan kondisi bawah permukaan dari kombinasi data mikrotremor array dan single station. Pengukuran mikrotremor array dilakukan di 9 lokasi, sedangkan single station di 90 lokasi yang tersebar pada radius ± 1 km di sekitar tapak RDE. Model bawah permukaan yang berupa struktur kecepatan gelombang geser selanjutnya dijadikan dasar untuk menghitung nilai Vs30 di daerah tersebut. Hasil klasifikasi soil berdasarkan nilai Vs30 menunjukkan kelas soil untuk wilayah sekitar tapak RDE secara umum terdiri atas kelas SD (soil menengah) dan SC (batuan lunak). Lokasi rencana tapak sendiri berada dalam wilayah kelas soil SD. Kata kunci : kelas soil, kecepatan gelombang geser, mikrotremor, tapak RDE, Vs30.   ABSTRACT SOIL CLASS AROUND THE SERPONG EXPERIMENTAL POWER REACTOR (EPR) SITE PLAN BASE ON MICROTREMOR DATA. Surface geological characteristics has an important role on site response analysis in a region. In regard with experimental power reactor (EPR) construction plan in Serpong, the subsurface modeling from combination array and single station microtremor data was done. The array and single station microtremor measurement were performed in 9 and 90 sites, respectively, at ± 1 km radius around the EPR site plan. The Vs30 value was calculated from shear wave velocity structure around the investigated area. The soil classification based on Vs30 in the investigated area generally consists of SD (medium soil) and SC (soft rock) class. The EPR site plan its self in the SD class region. Keyword : soil class, shear wave velocity, microtremor, EPR site, Vs30


Sign in / Sign up

Export Citation Format

Share Document