scholarly journals Mathematical model for determining characteristic points on the radial knife of the geokhod executive body

2021 ◽  
Vol 2052 (1) ◽  
pp. 012011
Author(s):  
A B Efremenkov ◽  
V V Aksenov ◽  
V Yu Sadovets ◽  
E V Preis ◽  
D A Pashkov

Abstract The article presents a mathematical model for determining the values of the characteristic points of the knife executive body (EB) of the geokhod. For this, the boundary conditions for determining the characteristic points on the radial knife of the geokhod executive body are indicated. The result of the work are the obtained expressions for determining: P a.c is the the projection of the component of the soil cutting force, depending on the cutting width, onto the main axis of rotation of the geokhod, R e.a.c is the projection of the component of the cutting force of the soil on the plane, which is located perpendicular to the main axis of rotation of the geokhod. Based on the work carried out, tasks for further research were identified.

2007 ◽  
Vol 80 (6) ◽  
pp. 1065-1071
Author(s):  
Yu. M. Pleskachevskii ◽  
V. I. Timoshpol’skii ◽  
S. V. Shil’ko ◽  
S. L. Gavrilenko ◽  
S. M. Kabishov

2019 ◽  
Vol 19 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Igor Planinc ◽  
Simon Schnabl

This paper focuses on development of a new mathematical model and its analytical solution for buckling analysis of elastic columns weakened simultaneously with transverse open cracks and partial longitudinal delamination. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated using the proposed analytical model. A parametric study is performed to investigate the effects of transverse crack location and magnitude, length and degree of partial longitudinal delamination, and different boundary conditions on critical buckling loads of weakened columns. It is shown that the critical buckling loads of weakened columns can be greatly affected by all the analyzed parameters. Finally, the presented results can be used as a benchmark solution.


2018 ◽  
Vol 18 (2) ◽  
pp. 166-172 ◽  
Author(s):  
V.V. Aksenov ◽  
◽  
V.V. Aksenov ◽  
V.Yu. Sadovets ◽  
V.Yu. Sadovets ◽  
...  

2021 ◽  
Author(s):  
BIPLAB BHATTACHARJEE ◽  
PRASUN CHAKRABORTI ◽  
KISHAN CHOUDHURY

Abstract In this article a mathematical model of single layered nano-fluid lubricated PJB (porous journal bearing) has been formulated. The nano-lubricant's impact on the efficiency of said journal bearing has been studied using modified Darcy's law and boundary conditions. The different nanoparticles often used as an additive in industrial lubricating oils improve their viscosity significantly. The brief description of dimensionless performance characteristics of the investigated bearing was obtained by the use of the nano-lubricant's modified Krieger-Dougherty viscosity model. The observations revealed that the output characteristics are substantially improved by using nano-lubricant. The present study was validated by comparing the findings of recently published data with micropolar fluid and was found to be completely compatible since data with nano-lubricant are still unavailable.


2019 ◽  
Vol 97 ◽  
pp. 03003
Author(s):  
Anna Avershyeva ◽  
Sergey Kuznetsov

A mathematical model for analyzing Lamb waves propagating in stratified media with arbitrary elastic anisotropy is worked out. The model incorporates a combined Fundamental Matrix (FM) and Modified Transfer Matrix (MTM) methods. Multilayered unbounded plates with different types of boundary conditions imposed on the outer surfaces are considered. Closed form fundamental matrices and secular equations for dispersion relations are derived.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 535
Author(s):  
Olena Borshch ◽  
Volodymyr Borshch ◽  
Dmytro Guzyk

In barrier building constructions the heat transfer occurs both at the expense of thermal conductivity and as a result of liquid and air vapors resistance. The mechanism of such resistance differs from classical processes of diffusion and the laws of hydrodynamics for integral medium.The temperature mode of the surface and deep layers of barrier building constructions in non-symmetric boundary conditions was     analyzed. A mathematical model was developed that characterizes the change in the thermal state of barrier constructions during thermal diffusion. The method for calculating the non-stationary thermal modes of flat walls was presented.  


2013 ◽  
Vol 734-737 ◽  
pp. 1276-1279
Author(s):  
Jing Guang Zhu

In order to improve the pump efficiency of pumping wells, by means of the basic formula of pump efficiency, the mathematical model and boundary conditions of dynamic control chart is obtained, and the pump efficiency of pumping wells is drawn. Analysis shown that the pump efficiency is sensitive to the water content and pump leak rate. The higher the water content is, the higher pump efficiency is. The pump efficiency will be reduced with the increasing of pump leak rate. The dynamic control chart of class II block of A oilfield is given in the paper. After taking the measures, the pump efficiency of pumping wells is obviously improved. The dynamic control chart drawn by this method can provide a scientific basis for improving the pump efficiency of pumping wells in oilfield.


2020 ◽  
Vol 37 (3) ◽  
pp. 363-388
Author(s):  
Kara L Maki ◽  
Richard J Braun ◽  
Gregory A Barron

Abstract We present a mathematical model to study the influence of a lipid reservoir, seen experimentally, at the lid margin on the formation and relaxation of the tear film during a partial blink. Applying the lubrication limit, we derive two coupled non-linear partial differential equations characterizing the evolution of the aqueous tear fluid and the covering insoluble lipid concentration. Departing from prior works, we explore a new set of boundary conditions (BCs) enforcing hypothesized lipid concentration dynamics at the lid margins. Using both numerical and analytical approaches, we find that the lipid-focused BCs strongly impact tear film formation and thinning rates. Specifically, during the upstroke of the eyelid, we find specifying the lipid concentration at the lid margin accelerates thinning. Parameter regimes that cause tear film formation success or failure are identified. More importantly, this work expands our understanding of the consequences of lipid dynamics near the lid margins for tear film formation.


Sign in / Sign up

Export Citation Format

Share Document