Analytical Buckling Loads of Columns Weakened Simultaneously with Transverse Cracks and Partial Delamination

2019 ◽  
Vol 19 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Igor Planinc ◽  
Simon Schnabl

This paper focuses on development of a new mathematical model and its analytical solution for buckling analysis of elastic columns weakened simultaneously with transverse open cracks and partial longitudinal delamination. Consequently, the analytical solution for buckling loads is derived for the first time. The critical buckling loads are calculated using the proposed analytical model. A parametric study is performed to investigate the effects of transverse crack location and magnitude, length and degree of partial longitudinal delamination, and different boundary conditions on critical buckling loads of weakened columns. It is shown that the critical buckling loads of weakened columns can be greatly affected by all the analyzed parameters. Finally, the presented results can be used as a benchmark solution.

Author(s):  
M Saeidifar ◽  
S N Sadeghi ◽  
M R Saviz

The present study introduces a highly accurate numerical calculation of buckling loads for an elastic rectangular plate with variable thickness, elasticity modulus, and density in one direction. The plate has two opposite edges ( x = 0 and a) simply supported and other edges ( y = 0 and b) with various boundary conditions including simply supported, clamped, free, and beam (elastically supported). In-plane normal stresses on two opposite simply supported edges ( x = 0 and a) are not limited to any predefined mathematical equation. By assuming the transverse displacement to vary as sin( mπ x/ a), the governing partial differential equation of plate motion will reduce to an ordinary differential equation in terms of y with variable coefficients, for which an analytical solution is obtained in the form of power series (Frobenius method). Applying the boundary conditions on ( y = 0 and b) yields the problem of finding eigenvalues of a fourth-order characteristic determinant. By retaining sufficient terms in power series, accurate buckling loads for different boundary conditions will be calculated. Finally, the numerical examples have been presented and, in some cases, compared to the relevant numerical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ai-rong Liu ◽  
Yong-hui Huang ◽  
Qi-cai Yu ◽  
Rui Rao

An analytical solution for lateral buckling critical load of leaning-type arch bridge was presented in this paper. New tangential and radial buckling models of the transverse brace between the main and stable arch ribs are established. Based on the Ritz method, the analytical solution for lateral buckling critical load of the leaning-type arch bridge with different central angles of main arch ribs and leaning arch ribs under different boundary conditions is derived for the first time. Comparison between the analytical results and the FEM calculated results shows that the analytical solution presented in this paper is sufficiently accurate. The parametric analysis results show that the lateral buckling critical load of the arch bridge with fixed boundary conditions is about 1.14 to 1.16 times as large as that of the arch bridge with hinged boundary condition. The lateral buckling critical load increases by approximately 31.5% to 41.2% when stable arch ribs are added, and the critical load increases as the inclined angle of stable arch rib increases. The differences in the center angles of the main arch rib and the stable arch rib have little effect on the lateral buckling critical load.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
K. M. Bajoria ◽  
S. A. Patare

AbstractThe present study takes its inspiration from notable work in the literature related to the flexural analysis of functionally graded material (FGM) plate along with a smart application of piezoelectric material but maintains its novelty in terms of simple approach, an analytical solution with a wide scope of application. Coupling the plate element with piezoelectric smart material can control deflection, vibration thereby increasing the safety, stability, and life of these elements. Plates made up of functionally graded material further enhances the applicability as two different materials are fused. Analysis of such a system is challenging especially for a closed form mathematical solution along with complex boundary conditions. In the present study, it is proposed to develop a simple analytical model for bending analysis of FGM plate coupled with piezoelectric layers. Polynomial based shear deformation function taken from literature is applied to develop a simple mathematical model. A complete flexural analysis is performed for FGM plate to validate the governing simple mathematical model. Through the smart application of piezoelectric material, the deflection of the FGM plate is controlled in as closed loop feedback system. Analytical solution valid over the entire plate domain is obtained incorporating fixed and simple support types of boundary conditions. The initial part of the study details complete mathematical formulation for the plate under consideration, followed by numerical validation in which results of the present model are compared with notable studies in the literature. Lastly, the smart application through shape control of the FGM plate is demonstrated graphically and numerically. The development and application of the discussed mathematical model presented in this study are complete in all aspects of its mathematical form, solution, and numerical validation.


1970 ◽  
Vol 37 (2) ◽  
pp. 384-392 ◽  
Author(s):  
M. Baruch ◽  
O. Harari ◽  
J. Singer

The stability of simply supported conical shells under axial compression is investigated for 4 different sets of in-plane boundary conditions with a linear Donnell-type theory. The first two stability equations are solved by the assumed displacement, while the third is solved by a Galerkin procedure. The boundary conditions are satisfied with 4 unknown coefficients in the expression for u and v. Both circumferential and axial restraints are found to be of primary importance. Buckling loads about half the “classical” ones are obtained for all but the stiffest simple supports SS4 (v = u = 0). Except for short shells, the effects do not depend on the length of the shell. The physical reason for the low buckling loads in the SS3 case is explained and the essential difference between cylinder and cone in this case is discussed. Buckling under combined axial compression and external or internal pressure is studied and interaction curves have been calculated for the 4 sets of in-plane boundary conditions.


2016 ◽  
Vol 10 (10) ◽  
pp. 133
Author(s):  
Mohammad Ali Nasiri Khalili ◽  
Mostafa Kafaei Razavi ◽  
Morteza Kafaee Razavi

Items supplies planning of a logistic system is one of the major issue in operations research. In this article the aim is to determine how much of each item per month from each supplier logistics system requirements must be provided. To do this, a novel multi objective mixed integer programming mathematical model is offered for the first time. Since in logistics system, delivery on time is very important, the first objective is minimization of time in delivery on time costs (including lack and maintenance costs) and the cost of purchasing logistics system. The second objective function is minimization of the transportation supplier costs. Solving the mathematical model shows how to use the Multiple Objective Decision Making (MODM) can provide the ensuring policy and transportation logistics needed items. This model is solved with CPLEX and computational results show the effectiveness of the proposed model.


1961 ◽  
Vol 28 (2) ◽  
pp. 288-291 ◽  
Author(s):  
H. D. Conway

The bending by uniform lateral loading, buckling by two-dimensional hydrostatic pressure, and the flexural vibrations of simply supported polygonal plates are investigated. The method of meeting the boundary conditions at discrete points, together with the Marcus membrane analog [1], is found to be very advantageous. Numerical examples include the calculation of the deflections and moments, and buckling loads of triangular square, and hexagonal plates. A special technique is then given, whereby the boundary conditions are exactly satisfied along one edge, and an example of the buckling of an isosceles, right-angled triangle plate is analyzed. Finally, the frequency equation for the flexural vibrations of simply supported polygonal plates is shown to be the same as that for buckling under hydrostatic pressure, and numerical results can be written by analogy. All numerical results agree well with the exact solutions, where the latter are known.


Author(s):  
Abbas Bayatfar ◽  
Jerome Matagne ◽  
Philippe Rigo

This study has been carried out on ultimate compressive strength of a cracked steel plate component, considering the effects of initial imperfections (transverse and longitudinal residual stresses and initial deflection, as well). The main objective of this paper is to numerically investigate the influence of crack location and crack length on ultimate strength of a steel plate under monotonic longitudinal compression. This investigation is performed through non-linear finite element (FE) analysis using ANSYS commercial finite element code in which is employed Newton-Raphson method. The FE results indicate that the length of transverse crack and especially its location can significantly affect the magnitude of ultimate strength where the steel plate is subjected to longitudinal compressive action.


2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.


Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


Sign in / Sign up

Export Citation Format

Share Document