scholarly journals MATLAB Wavelet analysis of electron energy spectrum in one-dimensional quantum well with infinitely high walls for Al-Ga-As system (0 < x < 1)

2021 ◽  
Vol 2056 (1) ◽  
pp. 012025
Author(s):  
E R Kozhanova ◽  
I M Tkachenko ◽  
V V Belyaev ◽  
S Maignan

Abstract This paper presents calculations of electronic states in AlxGa1-x As semiconductor nanostructures and simulates the envelope wave functions of quantum energy levels in a one-dimensional quantum well with infinitely high walls of a given width at various values of x. For the analysis of results the authors choose the function wtmm from the Matlab library that fixes the extremums and which is a characteristic of the fractality of the envelope wave functions of quantum energy levels.

2021 ◽  
Vol 2056 (1) ◽  
pp. 012024
Author(s):  
E R Kozhanova ◽  
I M Tkachenko

Abstract The paper presents calculations of electron states in semiconductor nanostructures AlxGa1–x As (x=0) and simulates the energy spectrum of the electron in a one-dimensional quantum well with infinitely high walls of a given width (from 10 to 30 atomic monolayers) using MATLAB application. The data is visualized using a wavelet transform with different wavelet functions.


2013 ◽  
Vol 27 (20) ◽  
pp. 1350103 ◽  
Author(s):  
M. A. PYATAEV ◽  
M. A. KOKOREVA

Spectral properties of periodic one-dimensional array of nanorings in a magnetic field are investigated. Two types of the superlattice are considered. In the first one, rings are connected by short one-dimensional wires while in the second one rings have immediate contacts between each other. The dependence of the electron energy on the quasimomentum is obtained from the Schrödinger equation for the Bloch wavefunction. We have found an interesting feature of the system, namely, presence of discrete energy levels in the spectrum. The levels can be located in the gaps or in the bands depending on parameters of the system. The levels correspond to bound states and electrons occupying these levels are located on individual rings or couples of neighboring rings and do not contribute to the charge transport. The wavefunction for the bound states corresponding to the discrete levels is obtained. Modification of electron energy spectrum with variation of system parameters is discussed.


Author(s):  
V.A. Kosobukin

AbstractA theory of plasmon-exciton coupling and its spectroscopy is developed for metal-semiconductor nanostructures. Considered as a model is a periodic superlattice with cells consisting of a quantum well and a layer of metal nanoparticles. The problem is solved self-consistently using the electrodynamic Green’s functions taking account of resonant polarization. Coulomb plasmon-exciton interaction is associated with the dipole surface plasmons of particles and their image charges due to excitonic polarization of neighboring quantum well. Optical reflection spectra are numerically investigated for superlattices with GaAs/AlGaAs quantum wells and silver nanoparticles. Superradiant regime caused by one-dimensional Bragg diffraction is studied for plasmonic, excitonic and plasmon-excitonic polaritons depending on the number of supercells. The plasmon-excitonic Rabi splitting is shown to occur in reflectivity spectra of resonant Bragg structures.


2016 ◽  
Vol 30 (13) ◽  
pp. 1642008 ◽  
Author(s):  
S. P. Kruchinin

Recent experiments have fabricated structured arrays. We study hybrid nanowires, in which normal and superconducting regions are in close proximity, by using the Bogoliubov–de Gennes equations for superconductivity in a cylindrical nanowire. We succeed to obtain the quantum energy levels and wavefunctions of a superconducting nanowire. The obtained spectra of electrons remind Hofstadter’s butterfly.


2015 ◽  
Vol 70 (2) ◽  
pp. 109-114 ◽  
Author(s):  
Arif M. Babanlı ◽  
Ekrem Artunç ◽  
Turgut F. Kasalak

AbstractWe have studied the Rashba spin-orbital effect on a diluted magnetic semiconductor (DMS) quantum well with parabolic potential in the presence of a magnetic field parallel to the z axis, taking into account the Zeeman coupling and the s-d exchange interaction between the carriers and the magnetic ions. We have obtained an analytical expression for the electron energy spectrum, which depends on the magnetic ion concentration, temperature, and strength of magnetic field. By using the obtained energy spectrum, we calculated the electron effective g*-factor. We have found that effective g*-factor increases when the magnetic field increases; by increasing the strength of spin-orbit interaction, the electron g*-factor decreases and by increasing the temperature, the electron g*-factor increases.


Author(s):  
V. V. Kudryashov ◽  
A. V. Baran

The circular quantum dots localized in the double heterostructures are simulated by means of the axially symmetric smooth confinement potential of finite depth. For the proposed potential of new type, the exact wave functions and the energy levels of electron are found. The dependence of energy spectrum on potential parameters is investigated.


2015 ◽  
Vol 10 (1) ◽  
pp. 2583-2604
Author(s):  
Lyubov E. Lokot

In this paper a theoretical studies of the space separation of electron and hole wave functions in the quantum well ZnO/Mg(0.27)Zn(0.73)O are presented. For this aim the self-consistent solution of the Schrödinger equations for electrons and holes and the Poisson equations at the presence of spatially varying quantum well potential due to the piezoelectric effect and local exchange-correlation potential is found. The one-dimensional Poisson equation contains the Hartree potential which includes the one-dimensional charge density for electrons and holes along the polarization field distribution. The three-dimensional Poisson equation contains besides the one-dimensional charge density for electrons and holes the exchange-correlation potential which is built on convolutions of a plane-wave part of wave functions in addition. The shifts of the Hartree valence band spectrums and the conduction band spectrum with respect to the flat band spectrums as well as the Hartree-Fock band spectrums with respect to the Hartree ones are found. An overlap integrals of the wave functions of holes and electron with taking into account besides the piezoelectric effects the exchange-correlation effects in addition is greater than an overlap integral of Hartree ones. The Hartree particles distribute greater on edges of quantum well than Hartree-Fock particles. It is found that an effective mass of heavy hole of Mg(0.27)Zn(0.73)O under biaxial strain is greater than an effective-mass of heavy hole of ZnO. It is calculated that an electron mass is less than a hole mass. It is found that the Bohr radius is grater than the localization range particle-hole pair, and the excitons may be spontaneously created.Schrödinger equation for pair of two massless Dirac particles when magnetic field is applied in Landau gauge is solved exactly. In this case the separation of center of mass and relative motion is obtained. Landau quantization $\epsilon=\pm\,B\sqrt{l}$ for pair of two Majorana fermions coupled via a Coulomb potential from massless chiral Dirac equation in cylindric coordinate is found. The root ambiguity in energy spectrum leads into Landau quantization for beelectron, when the states in which the one simultaneously exists are allowed. The tachyon solution with imaginary energy in Cooper problem ($\epsilon^{2}<0$) is found.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Malika Betrouche ◽  
Mustapha Maamache ◽  
Jeong Ryeol Choi

We study quantum features of the Dirac oscillator under the condition that the position and the momentum operators obey generalized commutationrelations that lead to the appearance of minimal length with the order of the Planck length,∆xmin=ℏ3β+β′, whereβandβ′are two positive small parameters. Wave functions of the system and the corresponding energy spectrum are derived rigorously. The presence of the minimal length accompanies a quadratic dependence of the energy spectrum on quantum numbern, implying the property of hard confinement of the system. It is shown that the infinite degeneracy of energy levels appearing in the usual Dirac oscillator is vanished by the presence of the minimal length so long asβ≠0. Not only in the nonrelativistic limit but also in the limit of the standard case(β=β′=0), our results reduce to well known usual ones.


Sign in / Sign up

Export Citation Format

Share Document